
Package: XLConnect (via r-universe)
August 22, 2024

Type Package

Title Excel Connector for R

Version 1.1.0

URL https://mirai-solutions.ch

https://github.com/miraisolutions/xlconnect

BugReports https://github.com/miraisolutions/xlconnect/issues

SystemRequirements Java (>= 8)

Depends R (>= 3.6.0)

Imports methods, rJava (>= 1.0-1)

Suggests RUnit, lattice, ggplot2 (>= 0.9.3), zoo

Description Provides comprehensive functionality to read, write and
format Excel data.

License GPL-3

Copyright See file COPYRIGHTS

LazyData yes

Repository https://miraisolutions.r-universe.dev

RemoteUrl https://github.com/miraisolutions/xlconnect

RemoteRef HEAD

RemoteSha b99ea5af439139e7530afe5827b62d739f39b7b5

Contents
XLConnect-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
addImage-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
appendNamedRegion-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
appendWorksheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
aref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
aref2idx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
cellstyle-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1

https://mirai-solutions.ch
https://github.com/miraisolutions/xlconnect
https://github.com/miraisolutions/xlconnect/issues


2 Contents

clearNamedRegion-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
clearRange-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
clearRangeFromReference-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
clearSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
cloneSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
col2idx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
createCellStyle-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
createFreezePane-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
createName-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
createSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
createSplitPane-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
cref2idx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
existsCellStyle-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
existsName-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
existsSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
extraction-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
extractSheetName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
getActiveSheetIndex-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
getActiveSheetName-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
getBoundingBox-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
getCellFormula-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
getCellStyle-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
getCellStyleForType-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
getDefinedNames-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
getForceFormulaRecalculation-methods . . . . . . . . . . . . . . . . . . . . . . . . . . 41
getLastColumn-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
getLastRow-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
getOrCreateCellStyle-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
getReferenceCoordinates-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
getReferenceCoordinatesForName-methods . . . . . . . . . . . . . . . . . . . . . . . . 46
getReferenceCoordinatesForTable-methods . . . . . . . . . . . . . . . . . . . . . . . . 47
getReferenceFormula-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
getSheetPos-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
getSheets-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
getTables-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
hideSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
idx2aref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
idx2col . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
idx2cref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
isSheetHidden-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
isSheetVeryHidden-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
isSheetVisible-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
loadWorkbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
mergeCells-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
mirai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
onErrorCell-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
print-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
readNamedRegion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents 3

readNamedRegionFromFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
readTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
readWorksheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
readWorksheetFromFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
removeName-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
removePane-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
removeSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
renameSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
saveWorkbook-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
setActiveSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
setAutoFilter-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
setBorder-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
setCellFormula-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
setCellStyle-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
setCellStyleForType-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
setColumnWidth-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
setDataFormat-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
setDataFormatForType-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
setFillBackgroundColor-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
setFillForegroundColor-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
setFillPattern-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
setForceFormulaRecalculation-methods . . . . . . . . . . . . . . . . . . . . . . . . . . 101
setHyperlink-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
setMissingValue-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
setRowHeight-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
setSheetColor-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
setSheetPos-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
setStyleAction-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
setStyleNamePrefix-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
setWrapText-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
show-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
summary-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
swissfranc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
unhideSheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
unmergeCells-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
with.workbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
workbook-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
writeNamedRegion-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
writeNamedRegionToFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
writeWorksheet-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
writeWorksheetToFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
XLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
xlcDump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
xlcEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
xlcFreeMemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
xlcMemoryReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
XLConnect-deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
xlcRestore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



4 XLConnect-package

$-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Index 137

XLConnect-package Excel Connector for R

Description

Provides comprehensive functionality to read, write and format Excel data.

Details

For an overview over the package please refer to the available demos:
demo(package = "XLConnect")

Author(s)

Mirai Solutions GmbH, <xlconnect@mirai-solutions.com>

References

Mirai Solutions GmbH: https://mirai-solutions.ch
XLConnect on GitHub: https://github.com/miraisolutions/xlconnect Mirai Solutions on
GitHub: https://github.com/miraisolutions
Apache POI: https://poi.apache.org

Examples

## Not run:
# Load workbook; create if not existing
wb <- loadWorkbook("XLConnect.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "mtcars")

# Create a name reference
createName(wb, name = "mtcars", formula = "mtcars!$C$5")

# Write built-in data.frame 'mtcars' to the specified named region
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("XLConnect.xlsx")

## End(Not run)

https://mirai-solutions.ch
https://github.com/miraisolutions/xlconnect
https://github.com/miraisolutions
https://poi.apache.org


addImage-methods 5

addImage-methods Adding images to a worksheet

Description

Adds an image to a worksheet using a named region.

Usage

## S4 method for signature 'workbook'
addImage(object, filename, name, originalSize, worksheetScope)

Arguments

object The workbook to use

filename Name of the image file. Supported are images of the following formats: JPG/JPEG,
PNG, WMF, EMF, BMP, PICT.

name Name of the named region that the image is set to

originalSize If originalSize = TRUE, the image is inserted in the top left corner of the named
region and not scaled. Otherwise, the image is scaled to fit the named region.
The default value for originalSize is FALSE.

worksheetScope Optional - the name of the worksheet in which the name is scoped; useful if
different sheets have scoped regions with the same name.

Note

There is an known issue in Apache POI with adding images to xls workbooks. The result of adding
images to workbooks that already contain shapes or images may be that previous images are re-
moved or that existing images are replaced with newly added ones. It is therefore advised that
you use the addImage functionality only with workbooks that have no existing shapes or images.
Note that this only holds for xls workbooks (Excel 97-2003) and not for xlsx (Excel 2007+). There
should be no issues with xlsx workbooks.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName

https://mirai-solutions.ch


6 appendNamedRegion-methods

Examples

## Not run:
## Write an R plot to a specified named region
## This example makes use of the 'Tonga Trench Earthquakes' example

# Load workbook (create if not existing)
wb <- loadWorkbook("earthquake.xlsx", create = TRUE)

# Create a sheet named 'earthquake'
createSheet(wb, name = "earthquake")

# Create a named region called 'earthquake' referring to the sheet
# called 'earthquake'
createName(wb, name = "earthquake", formula = "earthquake!$B$2")

# Create R plot to a png device
require(lattice)
png(filename = "earthquake.png", width = 800, height = 600)
devAskNewPage(ask = FALSE)

Depth <- equal.count(quakes$depth, number=8, overlap=.1)
xyplot(lat ~ long | Depth, data = quakes)
update(trellis.last.object(),

strip = strip.custom(strip.names = TRUE, strip.levels = TRUE),
par.strip.text = list(cex = 0.75),
aspect = "iso")

dev.off()

# Write image to the named region created above using the image's
# original size; i.e. the image's top left corner will match the
# specified cell's top left corner
addImage(wb, filename = "earthquake.png", name = "earthquake",

originalSize = TRUE)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("earthquake.xlsx")
file.remove("earthquake.png")

## End(Not run)

appendNamedRegion-methods

Appending data to a named region

Description

Appends data to an existing named region.



appendNamedRegion-methods 7

Usage

## S4 method for signature 'workbook,ANY'
appendNamedRegion(object,data,name,header,overwriteFormulaCells,rownames,worksheetScope)

Arguments

object The workbook to use

data Data to write

name Name of the (existing) named region to which to append the data

header Specifies if the column names should be written. The default is FALSE.
overwriteFormulaCells

Specifies if existing formula cells in the workbook should be overwritten. The
default is TRUE.

rownames Name (character) of column to use for the row names of the provided data
object. If specified, the row names of the data object (data.frame) will be
included as an additional column with the specified name. If rownames = NULL
(default), no row names will be included.

worksheetScope Optional character vector with worksheet name(s) to target a name defined in
the specified sheet(s) only. If not specified, the first matching named region is
appended to. Use "" to specifically target a globally-scoped named region.

Details

Appends data to the existing named region specified by name. The data is appended at the bottom
of the named region. See writeNamedRegion for further information on writing named regions.

Note

Named regions are automatically redefined to the area occupied by the previous and the newly ap-
pended data. This guarantees that the complete set of data can be re-read using readNamedRegion.
Note however, that no checks are performed to see whether the appended data has the same shape/structure
as the previous data.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, writeNamedRegion, readNamedRegion, writeWorksheet, appendWorksheet, readWorksheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

https://mirai-solutions.ch


8 appendWorksheet-methods

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Append mtcars data set to named region named 'mtcars'
appendNamedRegion(wb, mtcars, name = "mtcars")

## End(Not run)

appendWorksheet-methods

Appending data to worksheets

Description

Appends data to worksheets of a workbook.

Usage

## S4 method for signature 'workbook,ANY,character'
appendWorksheet(object,data,sheet,header,rownames)
## S4 method for signature 'workbook,ANY,numeric'
appendWorksheet(object,data,sheet,header,rownames)

Arguments

object The workbook to write to

data Data to append

sheet The name or index of the sheet to append the data to

header Specifies if the column names should be written. The default is TRUE.

rownames Name (character) of column to use for the row names of the provided data
object. If specified, the row names of the data object (data.frame) will be
included as an additional column with the specified name. If rownames = NULL
(default), no row names will be included.

Details

Appends data to the worksheet specified by sheet. Data will be appended at the bottom and left
most column containing some data. If more complex "appending schemes" are required you may
make direct use of writeWorksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, writeWorksheet, readWorksheet, writeNamedRegion, appendNamedRegion, readNamedRegion

https://mirai-solutions.ch


aref 9

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Append mtcars data set to worksheet named 'mtcars'
appendWorksheet(wb, mtcars, sheet = "mtcars")

## End(Not run)

aref Constructing Excel area references

Description

Constructs an Excel area reference

Usage

aref(topLeft, dimension)

Arguments

topLeft Top left corner. Either a character specifying a cell reference in the form "A1"
or a numeric vector of length two specifying the corresponding coordinates.

dimension Dimensions (numeric) of a 2-dimensional object (mostly a data.frame or a
matrix)

Value

Returns the area reference (character) for the specified top left cell and dimension.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

aref2idx, idx2aref, idx2cref, col2idx, idx2col

https://mirai-solutions.ch


10 aref2idx

Examples

## Not run:
aref("A1", dim(mtcars))
aref(c(1, 1), dim(mtcars))

## End(Not run)

aref2idx Converting Excel cell references to row and column based cell refer-
ences

Description

Converts Excel cell references to row and column based cell references

Usage

aref2idx(x)

Arguments

x Character vector of Excel cell references (e.g. "A1:B6", "B6:C17", ...)

Value

Returns a numeric matrix with four columns and as many rows as cell references that have been
provided. The first two columns represent the coordinates of the top left corner (row, column) and
the third and fourth columns represent the bottom right corner of the referenced area.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

idx2aref, aref, cref2idx, idx2cref, col2idx, idx2col

Examples

## Not run:
aref2idx(c("A1:B6", "B6:C17"))

## End(Not run)

https://mirai-solutions.ch


cellstyle-class 11

cellstyle-class Class "cellstyle"

Description

This class represents a cell style in a Microsoft Excel workbook. S4 objects of this class and cor-
responding methods are used to manipulate cell styles. This includes setting data formats, borders,
background- and foreground-colors, etc.

Objects from the Class

Cell styles are created by calling the createCellStyle method on a workbook object.

Slots

jobj: Object of class jobjRef (see package rJava) which represents a Java object reference that
is used in the back-end to manipulate the underlying Excel cell style instance.

Note

XLConnect generally makes use of custom (named) cell styles. This allows users to more easily
manage cell styles via Excel’s cell style menu. For example, assuming you were using a specific
custom cell style for your data table headers, you can change the header styling with a few clicks in
Excel’s cell style menu across all tables.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

References

Apply, create, or remove a cell style:
https://support.microsoft.com/en-us/office/apply-create-or-remove-a-cell-style-472213bf-66bd-40c8-815c-594f0f90cd22?
ocmsassetid=hp001216732&correlationid=5691ac73-b7a2-40c3-99aa-a06e806bb566&ui=en-us&
rs=en-us&ad=us

See Also

workbook, createCellStyle, setStyleAction, setCellStyle

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("cellstyles.xlsx", create = TRUE)

# We don't set a specific style action in this demo, so the

https://mirai-solutions.ch
https://support.microsoft.com/en-us/office/apply-create-or-remove-a-cell-style-472213bf-66bd-40c8-815c-594f0f90cd22?ocmsassetid=hp001216732&correlationid=5691ac73-b7a2-40c3-99aa-a06e806bb566&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/apply-create-or-remove-a-cell-style-472213bf-66bd-40c8-815c-594f0f90cd22?ocmsassetid=hp001216732&correlationid=5691ac73-b7a2-40c3-99aa-a06e806bb566&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/apply-create-or-remove-a-cell-style-472213bf-66bd-40c8-815c-594f0f90cd22?ocmsassetid=hp001216732&correlationid=5691ac73-b7a2-40c3-99aa-a06e806bb566&ui=en-us&rs=en-us&ad=us


12 clearNamedRegion-methods

# default 'XLConnect' will be used (XLC$"STYLE_ACTION.XLCONNECT")

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' referring to the sheet
# called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$C$4")

# Write built-in data set 'mtcars' to the above defined named region.
# This will use the default style action 'XLConnect'.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Now let's color all weight cells of cars with a weight > 3.5 in red
# (mtcars$wt > 3.5)

# First, create a corresponding (named) cell style
heavyCar <- createCellStyle(wb, name = "HeavyCar")

# Specify the cell style to use a solid foreground color
setFillPattern(heavyCar, fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(heavyCar, color = XLC$"COLOR.RED")

# Which cars have a weight > 3.5 ?
rowIndex <- which(mtcars$wt > 3.5)

# NOTE: The mtcars data.frame has been written offset with top
# left cell C4 - and we have also written a header row!
# So, let's take that into account appropriately. Obviously,
# the two steps could be combined directly into one ...
rowIndex <- rowIndex + 4

# The same holds for the column index
colIndex <- which(names(mtcars) == "wt") + 2

# Set the 'HeavyCar' cell style for the corresponding cells.
# Note: the row and col arguments are vectorized!
setCellStyle(wb, sheet = "mtcars", row = rowIndex, col = colIndex,

cellstyle = heavyCar)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("cellstyles.xlsx")

## End(Not run)



clearNamedRegion-methods 13

clearNamedRegion-methods

Clearing named regions in a workbook

Description

Clears named regions in a workbook.

Usage

## S4 method for signature 'workbook,character'
clearNamedRegion(object, name, worksheetScope)

Arguments

object The workbook to use

name The name of the named region to clear

worksheetScope Optional - the name of the worksheet in which the region is scoped; useful if
different sheets have scoped regions with the same name.

Details

Clearing a named region/range means to clear all the cells associated with that named region. Clear-
ing named regions can be useful if (named) data sets in a worksheet need to be replaced, i.e. data
is first read, modified in R and finally written back to the the same named region. Without clearing
the named region first, (parts of) the original data may still be visible if they occupied a larger range
in the worksheet.

If worksheetScope is unspecified, the first matching name found anywhere in the workbook will
be cleared. Otherwise, only a name specifically scoped to the worksheet may be cleared. To only
clear a name in global scope, pass "" as the value.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, clearSheet, clearRange, clearRangeFromReference, clearSheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",

package = "XLConnect")

# Load workbook

https://mirai-solutions.ch


14 clearRange-methods

wb <- loadWorkbook(demoExcelFile)

# Read named region 'mtcars'
data <- readNamedRegion(wb, name = "mtcars", header = TRUE)

# Only consider cars with a weight >= 5
data <- data[data$wt >= 5, ]

# Clear original named region
clearNamedRegion(wb, name = "mtcars")

# Write subsetted data back
# Note: this is covering a smaller area now -
# writeNamedRegion automatically redefines the named region
# to the size/area of the data
writeNamedRegion(wb, data = data, name = "mtcars",

header = TRUE)

## End(Not run)

clearRange-methods Clearing cell ranges in a workbook

Description

Clears cell ranges in a workbook.

Usage

## S4 method for signature 'workbook,numeric'
clearRange(object, sheet, coords)
## S4 method for signature 'workbook,character'

clearRange(object, sheet, coords)

Arguments

object The workbook to use

sheet The name or index of the worksheet in which to clear cell ranges

coords Numeric vector of length 4 or numeric matrix with 4 columns where the ele-
ments of the vector or rows in the matrix refer to the coordinates of the top-left
and bottom-right corners of the ranges to clear. I.e. a vector or each row speci-
fies the coordinates {top row, left column, bottom row, right column}. You may
use aref2idx to generate such a matrix.

Details

Clearing a cell range means to clear all the cells associated with that range.



clearRangeFromReference-methods 15

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, clearSheet, clearNamedRegion, clearRangeFromReference, clearSheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",

package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clear range from top left corner (4,2) ^= B4 to
# bottom right corner (6,4) ^= D6
clearRange(wb, sheet = "mtcars", coords = c(4, 2, 6, 4))

# Clear two ranges in one go ...
mat = matrix(c(5, 1, 6, 4, 5, 7, 7, 9), ncol = 4,

byrow = TRUE)
clearRange(wb, sheet = "mtcars", coords = mat)

# The above is equivalent to ...
clearRange(wb, sheet = "mtcars",

coords = aref2idx(c("A5:D6", "G5:I7")))

# This in turn is the same as ...
clearRangeFromReference(wb, reference = c("mtcars!A5:D6",

"mtcars!G5:I7"))

## End(Not run)

clearRangeFromReference-methods

Clearing cell ranges in a workbook

Description

Clears cell ranges specified by area reference in a workbook.

Usage

## S4 method for signature 'workbook,character'
clearRangeFromReference(object, reference)

https://mirai-solutions.ch


16 clearSheet-methods

Arguments

object The workbook to use

reference character specifying an area reference in the form ’SheetX!A7:B19’

Details

Clearing a cell range means to clear all the cells associated with that range. This method is very
similar to clearRange.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, clearSheet, clearNamedRegion, clearRange, clearSheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",

package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clear ranges A5:D6 and G5:I7 on sheet mtcars
clearRangeFromReference(wb, reference = c("mtcars!A5:D6",

"mtcars!G5:I7"))

## End(Not run)

clearSheet-methods Clearing worksheets in a workbook

Description

Clears worksheets with specified names or indices in a workbook.

Usage

## S4 method for signature 'workbook,numeric'
clearSheet(object, sheet)
## S4 method for signature 'workbook,character'

clearSheet(object, sheet)

https://mirai-solutions.ch


cloneSheet-methods 17

Arguments

object The workbook to use

sheet The name or the index of the worksheet to clear

Details

Clearing a worksheet means to clear all the cells in that worksheet. Consequently, the saved work-
book should be smaller in size. Clearing a worksheet can be useful if data sets in a worksheet need
to be replaced, i.e. data are first read, modified in R and finally written back to the worksheet.
Without clearing the worksheet first, (parts of) the original data may still be visible if they occupied
a larger range of the worksheet.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, clearNamedRegion, clearRange, clearRangeFromReference

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",

package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clear worksheets named 'mtcars' and 'mtcars2'
clearSheet(wb, sheet = c("mtcars", "mtcars2"))

# Clear 3rd worksheet
clearSheet(wb, sheet = 3)

## End(Not run)

cloneSheet-methods Cloning/copying worksheets

Description

Clones (copies) a worksheet in a workbook.

https://mirai-solutions.ch


18 cloneSheet-methods

Usage

## S4 method for signature 'workbook,numeric'
cloneSheet(object,sheet,name)
## S4 method for signature 'workbook,character'
cloneSheet(object,sheet,name)

Arguments

object The workbook to use

sheet The name or index of the worksheet to clone

name The name to assign to the cloned worksheet. Throws an exception if the name
to assign is the name of an already existing worksheet.

Details

If any worksheet-scoped named ranges are present on the original sheet, these named ranges will
not be present on the cloned worksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createSheet, removeSheet, renameSheet, getSheets, existsSheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clone the 'mtcars' worksheet and assign it the name 'mtcars cloned'
cloneSheet(wb, sheet = "mtcars", name = "mtcars cloned")

## End(Not run)

https://mirai-solutions.ch


col2idx 19

col2idx Converting Excel column names to indices

Description

Converts Excel column names to indices.

Usage

col2idx(x)

Arguments

x Character vector of Excel column names (e.g. "A", "AF", ...)

Value

Returns a vector of integers representing the corresponding column indices. Note that passing
invalid column name references may result in an arbitrary number.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

idx2col, cref2idx, idx2cref, idx2aref, aref2idx, aref

Examples

## Not run:
col2idx(c("A", "BTG"))

## End(Not run)

createCellStyle-methods

Creating custom named and anonymous cell styles

Description

Creates a custom named or anonymous cellstyle.

https://mirai-solutions.ch


20 createCellStyle-methods

Usage

## S4 method for signature 'workbook,character'
createCellStyle(object,name)

Arguments

object The workbook to use

name The name of the new cellstyle to create. Omit to create an anonymous
cellstyle.

Details

Creates a named cellstyle with the specified name. Named cell styles may be used in conjunction
with the name prefix style action (see setStyleAction) or may also be used directly with the
method setCellStyle. Named cell styles can easily be changed from within Excel using the cell
styles menu.

If name is missing, an anonymous cell style is created. Anonymous cell styles can be used in
conjunction with the setCellStyle method.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, getOrCreateCellStyle, existsCellStyle, setStyleAction, setStyleNamePrefix,
setCellStyle, setDataFormat, setBorder, setFillBackgroundColor, setFillForegroundColor,
setFillPattern, setWrapText

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("createCellstyles.xlsx", create = TRUE)

# We don't set a specific style action in this demo, so the
# default 'XLConnect' will be used (XLC$"STYLE_ACTION.XLCONNECT")

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' referring to the sheet
# called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$C$4")

# Write built-in data set 'mtcars' to the above defined named region.
# This will use the default style action 'XLConnect'.
writeNamedRegion(wb, mtcars, name = "mtcars")

https://mirai-solutions.ch


createFreezePane-methods 21

# Now let's color all weight cells of cars with a weight > 3.5 in red
# (mtcars$wt > 3.5)

# First, create a corresponding (named) cell style
heavyCar <- createCellStyle(wb, name = "HeavyCar")

# Specify the cell style to use a solid foreground color
setFillPattern(heavyCar, fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(heavyCar, color = XLC$"COLOR.RED")

# Which cars have a weight > 3.5 ?
rowIndex <- which(mtcars$wt > 3.5)

# NOTE: The mtcars data.frame has been written offset with
# top left cell C4 - and we have also written a header row!
# So, let's take that into account appropriately. Obviously,
# the two steps could be combined directly into one ...
rowIndex <- rowIndex + 4

# The same holds for the column index
colIndex <- which(names(mtcars) == "wt") + 2

# Set the 'HeavyCar' cell style for the corresponding cells.
# Note: the row and col arguments are vectorized!
setCellStyle(wb, sheet = "mtcars", row = rowIndex, col = colIndex,

cellstyle = heavyCar)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("createCellstyles.xlsx")

## End(Not run)

createFreezePane-methods

Creating a freeze pane on a worksheet

Description

Creates a freeze pane on a specified worksheet.

Usage

## S4 method for signature 'workbook,character'
createFreezePane(object, sheet, colSplit, rowSplit, leftColumn, topRow)
## S4 method for signature 'workbook,numeric'
createFreezePane(object, sheet, colSplit, rowSplit, leftColumn, topRow)



22 createFreezePane-methods

Arguments

object The workbook to use

sheet The name or index of the sheet on which to create a freeze pane

colSplit Horizontal position of freeze (as column index or name)

rowSplit Vertical position of freeze (as number of rows)

leftColumn Left column (as column index or name) visible in right pane. If not specified,
the default is leftColumn=colSplit

topRow Top row (as index) visible in bottom pane. If not specified, the default is topRow=rowSplit

Note

To keep an area of a worksheet visible while you scroll to another area of the worksheet, you can
lock specific rows or columns in one area by freezing or splitting panes.

When you freeze panes, you keep specific rows or columns visible when you scroll in the worksheet.
For example, you might want to keep row and column labels visible as you scroll.

When you split panes, you create separate worksheet areas that you can scroll within, while rows
or columns in the non-scrolled area remain visible.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

References

How to create a freeze pane/split pane in Office 2007 https://support.microsoft.com/en-us/
office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?
ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&
rs=en-us&ad=us

See Also

workbook createSplitPane removePane

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("freezePaneTest.xlsx", create = TRUE)

# Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

# Create a freeze pane on Sheet1, using as reference position the 5th column and the 5th row,
# showing the 10th column as the leftmost visible one in the right pane
# and the 10th row as the top visible one in the bottom pane.
createFreezePane(wb, "Sheet1", 5, 5, 10, 10)

https://mirai-solutions.ch
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us


createName-methods 23

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("freezePaneTest.xlsx")

## End(Not run)

createName-methods Creating names in a workbook

Description

Creates a named range for a specified formula in a workbook.

Usage

## S4 method for signature 'workbook'
createName(object, name, formula, overwrite, worksheetScope)

Arguments

object The workbook to use

name The name of the range to be created

formula Excel formula specifying the value / data the name refers to

overwrite If a name with the same name already exists and overwrite = TRUE, then this
name is removed first before the new one is created. If a name already exists
and overwrite = FALSE, then an exception is thrown. The default value for
overwrite is FALSE.

worksheetScope Optional - specific worksheet the name should be scoped to. If unspecified the
name will be scoped to the whole workbook.

Details

Creates a named range called name for the specified formula.

The formula should be specified as you would type it in Excel. Make sure that the worksheets,
functions, ... exist that you are referring to in the formula.

The name, formula and overwrite arguments are vectorized such that multiple names can be
created in one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch


24 createSheet-methods

References

What are named regions/ranges?
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/
named_ranges_in_microsoft_excel.htm
How to create named regions/ranges?
https://www.youtube.com/watch?v=iAE9a0uRtpM

See Also

workbook, removeName, existsName, getDefinedNames,
readNamedRegion, writeNamedRegion

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("createName.xlsx", create = TRUE)

# Create a worksheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' on the sheet called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$A$1")

# Write built-in data set 'mtcars' to the above defined named region
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("createName.xlsx")

## End(Not run)

createSheet-methods Creating worksheets in a workbook

Description

Creates worksheets with specified names in a workbook.

Usage

## S4 method for signature 'workbook'
createSheet(object, name)

https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
https://www.youtube.com/watch?v=iAE9a0uRtpM


createSplitPane-methods 25

Arguments

object The workbook to use

name The name of the sheet to create

Details

Creates a worksheet with the specified name if it does not already exist. Note that the naming of
worksheets needs to be in line with Excel’s convention, otherwise an exception will be thrown. For
example, worksheet names cannot be longer than 31 characters. Also note that the name argument
is vectorized, so multiple worksheets can be created in one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, removeSheet, renameSheet, existsSheet, getSheets, cloneSheet

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("createSheet.xlsx", create = TRUE)

# Create a worksheet called 'CO2'
createSheet(wb, name = "CO2")

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("createSheet.xlsx")

## End(Not run)

createSplitPane-methods

Creating a split pane on a worksheet

Description

Creates a split pane on a specified worksheet.

https://mirai-solutions.ch


26 createSplitPane-methods

Usage

## S4 method for signature 'workbook,character'
createSplitPane(object,sheet,xSplitPos,ySplitPos,leftColumn,topRow)
## S4 method for signature 'workbook,numeric'
createSplitPane(object,sheet,xSplitPos,ySplitPos,leftColumn,topRow)

Arguments

object The workbook to use

sheet The name or index of the sheet on which to create a split pane

xSplitPos Horizontal position of split (in 1/20th of a point)

ySplitPos Vertical position of split (in 1/20th of a point)

leftColumn Left column (as index or column name) visible in right pane

topRow Top row visible in bottom pane

Note

To keep an area of a worksheet visible while you scroll to another area of the worksheet, you can
lock specific rows or columns in one area by freezing or splitting panes.

When you freeze panes, you keep specific rows or columns visible when you scroll in the worksheet.
For example, you might want to keep row and column labels visible as you scroll.

When you split panes, you create separate worksheet areas that you can scroll within, while rows
or columns in the non-scrolled area remain visible.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

References

How to create a freeze pane/split pane in Office 2007 https://support.microsoft.com/en-us/
office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?
ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&
rs=en-us&ad=us

See Also

workbook createFreezePane removePane

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("splitPaneTest.xlsx", create = TRUE)

# Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

https://mirai-solutions.ch
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us


cref2idx 27

# Create a split pane on Sheet1, with coordinates (10000, 5000) expressed as 1/20th of a point,
# 10 (-> J) as left column visible in right pane and 10 as top row visible in bottom pane
createSplitPane(wb, "Sheet1", 10000, 5000, 10, 10)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("splitPaneTest.xlsx")

## End(Not run)

cref2idx Converting Excel cell references to indices

Description

Converts Excel cell references to row & column indices

Usage

cref2idx(x)

Arguments

x Character vector of Excel cell references (e.g. "$A$20", "B18", ...)

Value

Returns a numeric matrix with two columns and as many rows as cell references that have been
provided. The first column represents the row indices and the second column represents the column
indices.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

idx2cref, col2idx, idx2col, idx2aref, aref2idx, aref

Examples

## Not run:
cref2idx(c("$A$20", "B18"))

## End(Not run)

https://mirai-solutions.ch


28 existsCellStyle-methods

existsCellStyle-methods

Retrieving named cell styles

Description

Checks whether a named cell style exists in a workbook.

Usage

## S4 method for signature 'workbook'
existsCellStyle(object,name)

Arguments

object The workbook to use
name The name of the cellstyle to check

Details

Checks whether the cellstyle with the specified name exists.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, createCellStyle, getOrCreateCellStyle

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("existsCellStyle.xlsx", create = TRUE)

# Cell style 'MyStyle' does not exist yet
stopifnot(!existsCellStyle(wb, "MyStyle"))

# Create the style "MyStyle"
createCellStyle(wb, "MyStyle")

# And now it is here
stopifnot(existsCellStyle(wb, "MyStyle"))

# clean up
file.remove("existsCellStyle.xlsx")

## End(Not run)

https://mirai-solutions.ch


existsName-methods 29

existsName-methods Checking existence of named ranges in a workbook

Description

Checks the existence of a named range in a workbook.

Usage

## S4 method for signature 'workbook'
existsName(object, name, worksheetScope)

Arguments

object The workbook to use

name The name to check for

worksheetScope Optional - the specific worksheet to check

Details

Returns TRUE if the specified name exists and FALSE otherwise. Note that the name argument is
vectorized and therefore multiple names can be checked for existence in one method call.

If worksheetScope is provided, TRUE will be returned only if a matching named range exists in
the local scope of the specified sheet. To explicitly match only in the global scope, pass "" as the
value.

If option XLConnect.setCustomAttributes is TRUE (default FALSE), the worksheet scope in which
the name is defined is set as attribute worksheetScope on the result.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, removeName, getDefinedNames, readNamedRegion,
writeNamedRegion

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

https://mirai-solutions.ch


30 existsSheet-methods

# Check if the name 'mtcars' exists
# (should return TRUE since the name is defined as 'mtcars!$A$1:$K$33')
existsName(wb, name = "mtcars")

# check if the worksheet-scoped name 'iris' exists
options(XLConnect.setCustomAttributes = TRUE)
wb <- loadWorkbook("demoFiles/iris.xlsx")

# should return TRUE with worksheet scope "iris"
res <- existsName(wb, name = "iris")
res
attributes(res)

## End(Not run)

existsSheet-methods Checking for existence of worksheets in a workbook

Description

Checks the existence of a worksheet in a workbook.

Usage

## S4 method for signature 'workbook'
existsSheet(object,name)

Arguments

object The workbook to use

name The sheet name to check for

Details

Checks if the specified worksheet exists. Returns TRUE if it exists, otherwise FALSE. The name
argument is vectorized which allows to check for existence of multiple worksheets with one call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createSheet, removeSheet, renameSheet, getSheets, cloneSheet

https://mirai-solutions.ch


extraction-methods 31

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Check for existence of a worksheet called 'mtcars'
existsSheet(wb, "mtcars")

## End(Not run)

extraction-methods Workbook data extraction & replacement operators

Description

Operators that allow to extract/replace data from/on a workbook.

Arguments

x The workbook object to use

i Name of worksheet ([, [<-) or name of Excel name ([[, [[<-) to extract or
replace

j Only used with [[<-: Optional formula to define the Excel name if it does not
yet exist on the workbook.

drop Not used

value Data object used for replacement

... Arguments passed to the corresponding underlying function to read/write the
data

Details

The workbook extraction operators are basically syntactic sugar for the common methods readWorksheet
([), writeWorksheet ([<-), readNamedRegion ([[), writeNamedRegion ([[<-).

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, readWorksheet, writeWorksheet, readNamedRegion, writeNamedRegion

https://mirai-solutions.ch


32 extraction-methods

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("extraction.xlsx", create = TRUE)

# Write mtcars data set on a worksheet named 'mtcars1'.
# Note: The 'mtcars1' sheet will be created automatically if it does
# not exist yet. Also, default values for other writeWorksheet arguments
# hold, i.e. the data set is written starting at the top left corner.
wb["mtcars1"] = mtcars

# Write mtcars data set on a worksheet named 'mtcars2'.
# Again, the 'mtcars2' worksheet is created automatically.
# Additionally specify arguments passed to the underlying method
# writeWorksheet.
wb["mtcars2", startRow = 6, startCol = 11, header = FALSE] = mtcars

# Read worksheets 'mtcars1' and 'mtcars2'.
# Note: The default arguments hold for the underlying method
# readWorksheet.
wb["mtcars1"]
wb["mtcars2"]

# Write mtcars data set to a named region named 'mtcars3'. Since
# it doesn't exist yet we also need to specify the formula to
# define it. Also note that the sheet 'mtcars3' referenced in the
# formula does not yet exist - it will be created automatically!
# Moreover, default values for other writeNamedRegion arguments hold.
wb[["mtcars3", "mtcars3!$B$7"]] = mtcars

# Redefine named region 'mtcars3'. Note that no formula specification
# is required since named region is already defined (see above example).
wb[["mtcars3"]] = mtcars

# Write mtcars data set to a named region 'mtcars4'. Since the named
# region does not yet exist a formula specification is required. Also,
# additional arguments are specified that are passed to the underlying
# method writeNamedRegion.
wb[["mtcars4", "mtcars4!$D$8", rownames = "Car"]] = mtcars

# Read the named regions 'mtcars3' and 'mtcars4'.
# Note: Default values hold for the underlying method readNamedRegion.
wb[["mtcars3"]]
wb[["mtcars4"]]

# clean up
file.remove("extraction.xlsx")

## End(Not run)



extractSheetName 33

extractSheetName Extracting the sheet name from a formula

Description

Extracts the sheet name from a formula of the form <SHEET_NAME>!<CELL_ADDRESS>

Usage

extractSheetName(formula)

Arguments

formula Formula string of the form <SHEET_NAME>!<CELL_ADDRESS>. Note that
the validity of the formula won’t be checked.

Value

Returns the name of the sheet referenced in the formula. For quoted sheet names (required if names
contain e.g. whitespaces or exclamation marks (!)) in formulas the function returns the unquoted
name.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

Examples

## Not run:
extractSheetName(c("MySheet!$A$1", "'My Sheet'!$A$1", "'My!Sheet'!$A$1"))

## End(Not run)

getActiveSheetIndex-methods

Querying the active worksheet index

Description

Queries the index of the active worksheet in a workbook.

Usage

## S4 method for signature 'workbook'
getActiveSheetIndex(object)

https://mirai-solutions.ch


34 getActiveSheetName-methods

Arguments

object The workbook to use

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getActiveSheetName

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query the active sheet index
activeSheet <- getActiveSheetIndex(wb)

## End(Not run)

getActiveSheetName-methods

Querying the active worksheet name

Description

Queries the name of the active worksheet in a workbook.

Usage

## S4 method for signature 'workbook'
getActiveSheetName(object)

Arguments

object The workbook to use

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch
https://mirai-solutions.ch


getBoundingBox-methods 35

See Also

workbook, getActiveSheetIndex

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query the active sheet name
activeSheet <- getActiveSheetName(wb)

## End(Not run)

getBoundingBox-methods

Querying the coordinates of a worksheet bounding box

Description

This function queries the coordinates of a bounding box in an Excel worksheet. A bounding box is
the rectangular region of minimum size containing all the non-empty cells in a sheet.

Usage

## S4 method for signature 'workbook,character'
getBoundingBox(object,sheet,startRow,startCol,endRow,endCol,autofitRow,autofitCol)
## S4 method for signature 'workbook,numeric'
getBoundingBox(object,sheet,startRow,startCol,endRow,endCol,autofitRow,autofitCol)

Arguments

object The workbook to use

sheet The name or index of the sheet from which to get the bounding box

startRow Start reference row for the bounding box. Defaults to 0 meaning that the start
row is determined automatically.

startCol Start reference column for the bounding box. Defaults to 0 meaning that the
start column is determined automatically.

endRow End reference row for the bounding box. Defaults to 0 meaning that the end row
is determined automatically.

endCol End reference column for the bounding box. Defaults to 0 meaning that the end
column is determined automatically.



36 getBoundingBox-methods

autofitRow logical specifying if leading and trailing empty rows should be skipped. De-
faults to TRUE.

autofitCol logical specifying if leading and trailing empty columns should be skipped.
Defaults to TRUE.

Details

The result is a matrix containing the following coordinates:
[1,] top left row
[2,] top left column
[3,] bottom right row
[4,] bottom right column

In case more than one sheet is selected, the result matrix will contain a column for each sheet.

The bounding box resolution algorithm works as follows:
If startRow <= 0 then the first available row in the sheet is assumed. If endRow <= 0 then the
last available row in the sheet is assumed. If startCol <= 0 then the minimum column between
startRow and endRow is assumed. If endCol <= 0 then the maximum column between startRow
and endRow is assumed. The arguments autofitRow and autofitCol (both defaulting to TRUE)
can be used to skip leading and trailing empty rows even in case startRow, endRow, startCol
and endCol are specified to values > 0. This can be useful if data is expected within certain given
boundaries but the exact location is not available.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook

Examples

## Not run:
# multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query bounding box for the second sheet
print(getBoundingBox(wb, sheet="SecondSheet"))

# Query bounding box for the first sheet, selecting the columns from 5 to 8
print(getBoundingBox(wb, sheet="FirstSheet", startCol=5, endCol=8))

## End(Not run)

https://mirai-solutions.ch


getCellFormula-methods 37

getCellFormula-methods

Retrieving formula definitions from cells

Description

Retrieves a cell formula from a workbook.

Usage

## S4 method for signature 'workbook,character'
getCellFormula(object,sheet,row,col)
## S4 method for signature 'workbook,numeric'
getCellFormula(object,sheet,row,col)

Arguments

object The workbook to use

sheet The name or index of the worksheet containing the cell

row The one-based row index of the cell to query

col The one-based column index of the cell to query

Details

Retrieves the formula of the specified cell as a character, without the initial = character displayed in
Excel. Raises an error if the specified cell is not a formula cell.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setCellFormula

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("cellFormula.xlsx", create = TRUE)

createSheet(wb, "Formula")

# Assign a formula to A1
setCellFormula(wb, "Formula", 1, 1, "SUM($B$1:$B$29)")

# Returns the formula for Sheet1!A1

https://mirai-solutions.ch


38 getCellStyle-methods

getCellFormula(wb, "Formula", 1, 1)
# The same with a numeric sheet index
getCellFormula(wb, 1, 1, 1)

# clean up
file.remove("cellFormula.xlsx")

## End(Not run)

getCellStyle-methods Retrieving named cell styles

Description

Retrieves a named cell style from a workbook.

Usage

## S4 method for signature 'workbook'
getCellStyle(object,name)

Arguments

object The workbook to use

name The name of the cellstyle to retrieve

Details

Retrieves the cellstyle with the specified name.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setStyleAction, createCellStyle, getOrCreateCellStyle, existsCellStyle,
setStyleNamePrefix, setCellStyle, setDataFormat, setBorder, setFillBackgroundColor,
setFillForegroundColor, setFillPattern, setWrapText

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("getCellstyles.xlsx", create = TRUE)

# You wouldn't usually ignore the return value here...
createCellStyle(wb, 'Header')

https://mirai-solutions.ch


getCellStyleForType-methods 39

# ... but if you did it doesn't hurt.
cs <- getCellStyle(wb, 'Header')

# Specify the cell style to use a solid foreground color
setFillPattern(cs, fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(cs, color = XLC$"COLOR.RED")

# clean up
file.remove("getCellstyles.xlsx")

## End(Not run)

getCellStyleForType-methods

Querying the cell style per data type for the DATATYPE style action

Description

Queries the cell style for a specific data type as used by the DATATYPE style action.

Usage

## S4 method for signature 'workbook'
getCellStyleForType(object,type)

Arguments

object The workbook to use

type The data type for which to get the cellstyle.

Details

Based on the (cell) data type the DATATYPE style action (see setStyleAction) sets the cellstyle
for the corresponding cells. The data type is normally specified via a corresponding data type
constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setCellStyleForType, setStyleAction

https://mirai-solutions.ch


40 getDefinedNames-methods

Examples

## Not run:
file.copy(system.file("demoFiles/template2.xlsx",

package = "XLConnect"),
"datatype.xlsx", overwrite = TRUE)

# Load workbook
wb <- loadWorkbook("datatype.xlsx")

# Get current (existing) cell style for numerics
cs <- getCellStyleForType(wb, XLC$"DATA_TYPE.NUMERIC")
# Could also say cs <- getCellStyleForType(wb, "numeric")

# Change style
setBorder(cs, side = c("bottom", "right"), type = XLC$"BORDER.THICK",

color = c(XLC$"COLOR.BLACK", XLC$"COLOR.RED"))

# Set style action to 'datatype'
setStyleAction(wb, XLC$"STYLE_ACTION.DATATYPE")

# Write built-in data set 'mtcars' to the named region
# 'mtcars' as defined by the Excel template.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("datatype.xlsx")

## End(Not run)

getDefinedNames-methods

Retrieving defined names in a workbook

Description

Retrieves the defined names in a workbook.

Usage

## S4 method for signature 'workbook'
getDefinedNames(object, validOnly, worksheetScope)

Arguments

object The workbook to use



getForceFormulaRecalculation-methods 41

validOnly If validOnly = TRUE only names with valid references are returned. Valid ref-
erences are ones not starting with #REF! or #NULL! - which could result e.g.
due to a missing sheet reference. The default value for validOnly is TRUE.

worksheetScope Optional - the name of the worksheet in which the names are scoped; to only
query names in the global scope, use the value ""

Details

If option XLConnect.setCustomAttributes is TRUE (default FALSE), a list of the worksheet scopes
in which the names were found is set as attribute worksheetScope on the result.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, removeName, existsName, readNamedRegion,
writeNamedRegion

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Retrieve defined names with valid references
getDefinedNames(wb)

## End(Not run)

getForceFormulaRecalculation-methods

Querying the coordinates of the range reference by an Excel name

Description

Queries the "force formula recalculation" flag on an Excel worksheet.

Usage

## S4 method for signature 'workbook,character'
getForceFormulaRecalculation(object,sheet)
## S4 method for signature 'workbook,numeric'
getForceFormulaRecalculation(object,sheet)

https://mirai-solutions.ch


42 getLastColumn-methods

Arguments

object The workbook to use

sheet The name or index of the sheet to query. This argument is vectorized such that
multiple sheets can be queried with one method call. If sheet = "*", the flag is
queried for all sheets in the workbook (in the order as returned by getSheets).

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getSheets, setForceFormulaRecalculation

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Ask whether Excel will automatically recalculate formulas on sheet mtcars
print(getForceFormulaRecalculation(wb, sheet = "mtcars"))

## End(Not run)

getLastColumn-methods Querying the last (non-empty) column on a worksheet

Description

Queries the last (non-empty) column on a worksheet.

Usage

## S4 method for signature 'workbook,character'
getLastColumn(object,sheet)
## S4 method for signature 'workbook,numeric'
getLastColumn(object,sheet)

Arguments

object The workbook to use

sheet The name or index of the sheet of which to query the last column

https://mirai-solutions.ch


getLastRow-methods 43

Details

Returns the (1-based) numeric index of the last non-empty column in the specified worksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query the last row of the 'mtcars' worksheet
getLastColumn(wb, "mtcars")

# Query the last row of the 'mtcars2' worksheet
getLastColumn(wb, "mtcars2")

# Query the last row of the 'mtcars3' worksheet
getLastColumn(wb, "mtcars3")

## End(Not run)

getLastRow-methods Querying the last (non-empty) row on a worksheet

Description

Queries the last (non-empty) row on a worksheet.

Usage

## S4 method for signature 'workbook,character'
getLastRow(object,sheet)
## S4 method for signature 'workbook,numeric'
getLastRow(object,sheet)

https://mirai-solutions.ch


44 getOrCreateCellStyle-methods

Arguments

object The workbook to use

sheet The name or index of the sheet of which to query the last row

Details

Returns the numeric index of the last non-empty row in the specified worksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query the last row of the 'mtcars' worksheet
getLastRow(wb, "mtcars")

# Query the last row of the 'mtcars2' worksheet
getLastRow(wb, "mtcars2")

# Query the last row of the 'mtcars3' worksheet
getLastRow(wb, "mtcars3")

## End(Not run)

getOrCreateCellStyle-methods

Retrieving or creating named cell styles

Description

Retrieves or creates cell styles in workbooks.

Usage

## S4 method for signature 'workbook,character'
getOrCreateCellStyle(object,name)

https://mirai-solutions.ch


getReferenceCoordinates-methods 45

Arguments

object The workbook to use

name The name of the cellstyle to retrieve or to create

Details

Retrieves an existing cellstyle if it exists or creates a new one if it does not exist yet.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, createCellStyle, existsCellStyle

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("getOrCreateCellStyle.xlsx", create = TRUE)

# The first time, the style does not exist yet and gets created
myStyle <- getOrCreateCellStyle(wb, name = "MyStyle")

# The second time, we retrieve the already existing style
myStyle <- getOrCreateCellStyle(wb, name = "MyStyle")

# clean up
file.remove("getOrCreateCellStyle.xlsx")

## End(Not run)

getReferenceCoordinates-methods

Querying the coordinates of the range reference by an Excel name

Description

(DEPRECATED) Queries the coordinates of an Excel named range in a workbook.

Usage

## S4 method for signature 'workbook'
getReferenceCoordinates(object,name)

https://mirai-solutions.ch


46 getReferenceCoordinatesForName-methods

Arguments

object The workbook to use

name The name to query. This argument is vectorized such that multiple names can
be queried with one method call.

Note

This function is deprecated. Use getReferenceCoordinatesForName instead.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, existsName, removeName, getReferenceFormula

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference coordinate for name 'mtcars'
print(getReferenceCoordinatesForName(wb, name = "mtcars"))

## End(Not run)

getReferenceCoordinatesForName-methods

Querying the coordinates of the range reference by an Excel name

Description

Queries the coordinates of an Excel named range in a workbook.

Usage

## S4 method for signature 'workbook'
getReferenceCoordinatesForName(object,name, worksheetScope)

https://mirai-solutions.ch


getReferenceCoordinatesForTable-methods 47

Arguments

object The workbook to use
name The name to query. This argument is vectorized such that multiple names can

be queried with one method call.
worksheetScope Optional, the name of the worksheet to use for resolving the named region

Details

If worksheetScope is defined, only coordinates for a range scoped strictly to the specified work-
sheet are returned. To explicitly only query for named ranges in the global scope, pass "" as the
value.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, existsName, removeName, getReferenceFormula, getReferenceCoordinatesForTable

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference coordinate for name 'mtcars'
print(getReferenceCoordinatesForName(wb, name = "mtcars"))

## End(Not run)

getReferenceCoordinatesForTable-methods

Querying the coordinates of the range of an Excel table

Description

Queries the coordinates of an Excel table (Office 2007+) in a workbook.

Usage

## S4 method for signature 'workbook,numeric'
getReferenceCoordinatesForTable(object,sheet,table)
## S4 method for signature 'workbook,character'
getReferenceCoordinatesForTable(object,sheet,table)

https://mirai-solutions.ch


48 getReferenceFormula-methods

Arguments

object The workbook to use

sheet The index or name of the worksheet on which to look for the specified table

table The name of the table to query. This argument is vectorized such that multiple
tables can be queried with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, existsName, removeName, getReferenceFormula, getReferenceCoordinatesForName

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference coordinates for table 'MtcarsTable' on sheet
# 'mtcars_table'
print(getReferenceCoordinatesForTable(wb, sheet = "mtcars_table",

table = "MtcarsTable"))

## End(Not run)

getReferenceFormula-methods

Querying reference formulas of Excel names

Description

Queries the reference formula of an Excel named range in a workbook.

Usage

## S4 method for signature 'workbook'
getReferenceFormula(object,name, worksheetScope)

https://mirai-solutions.ch


getSheetPos-methods 49

Arguments

object The workbook to use

name The named range to query. This argument is vectorized such that multiple names
can be queried with one method call.

worksheetScope Optional - the name of the worksheet in which the name is scoped; if undefined
a matching name in any scope may be returned. To specify global scope only,
use the value ""

.

Details

If option XLConnect.setCustomAttributes is TRUE (default FALSE), the worksheet scope in which
the queried name is defined is set as attribute worksheetScope on the result.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, existsName, removeName

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference formula for name 'mtcars'
print(getReferenceFormula(wb, name = "mtcars"))

## End(Not run)

getSheetPos-methods Querying worksheet position

Description

Queries the position of a worksheet in a workbook.

Usage

## S4 method for signature 'workbook,character'
getSheetPos(object,sheet)

https://mirai-solutions.ch


50 getSheets-methods

Arguments

object The workbook to use

sheet The name of the worksheet (character) to query. This argument is vectorized
such that multiple worksheets can be queried with one method call.

Value

Returns the position index of the corresponding worksheet. Note that querying a non-existing work-
sheet results in a 0 index and does not throw an exception!

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setSheetPos, getSheets

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query worksheet positions for the worksheets 'mtcars2', 'mtcars3',
# 'mtcars' and 'NotThere' (which actually does not exist)
print(getSheetPos(wb, sheet = c("mtcars2", "mtcars3", "mtcars", "NotThere")))

## End(Not run)

getSheets-methods Querying available worksheets in a workbook

Description

Returns all worksheet names in a workbook.

Usage

## S4 method for signature 'workbook'
getSheets(object)

Arguments

object The workbook to use

https://mirai-solutions.ch


getTables-methods 51

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createSheet, removeSheet, renameSheet, getSheetPos, setSheetPos

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query available worksheets
sheets <- getSheets(wb)

## End(Not run)

getTables-methods Querying available Excel tables in a workbook

Description

Queries the available Excel tables on the specified worksheet.

Usage

## S4 method for signature 'workbook,numeric'
getTables(object,sheet,simplify)
## S4 method for signature 'workbook,character'
getTables(object,sheet,simplify)

Arguments

object The workbook to use

sheet Index (integer) or name (character) of worksheet to query

simplify logical specifying if the result should be simplified (defaults to TRUE). See
details.

Details

Since this is a vectorized function (multiple sheets can be specified) the result is a named list (one
component per sheet) if no simplification is applied. In cases where only one sheet is queried and
simplify = TRUE (default) the result is simplified to a vector.

https://mirai-solutions.ch


52 hideSheet-methods

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getSheets, readTable

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query available tables (table names) on sheet 'mtcars_table'
tables <- getTables(wb, sheet = "mtcars_table")

# ... or via sheet index
tables <- getTables(wb, sheet = 4)

## End(Not run)

hideSheet-methods Hiding worksheets in a workbook

Description

(Very) hides the specified worksheets in a workbook.

Usage

## S4 method for signature 'workbook,character'
hideSheet(object, sheet, veryHidden)
## S4 method for signature 'workbook,numeric'
hideSheet(object, sheet, veryHidden)

Arguments

object The workbook to use

sheet The name or index of the sheet to hide

veryHidden If veryHidden = TRUE, the specified sheet is "very" hidden (see note), other-
wise it is just hidden. Default is FALSE.

https://mirai-solutions.ch


hideSheet-methods 53

Details

The arguments sheet and veryHidden are vectorized such that multiple worksheets can be (very)
hidden with one method call. An exception is thrown if the specified sheet does not exist.

Note

Note that hidden worksheets can be unhidden by users directly within Excel via standard function-
ality. Therefore Excel knows the concept of "very hidden" worksheets. These worksheets cannot be
unhidden with standard Excel functionality but need programatic intervention to be made visible.

Also note that in case the specified worksheet to hide is the currently active worksheet, then
hideSheet tries to set the active worksheet to the first non-hidden (not hidden and not very hidden)
worksheet in the workbook. If there is no such worksheet, hideSheet will throw an exception.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, unhideSheet, isSheetHidden, isSheetVeryHidden, isSheetVisible

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("hiddenWorksheet.xlsx", create = TRUE)

# Write a couple of built-in data.frame's into sheets
# with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {

createSheet(wb, name = obj)
writeWorksheet(wb, get(obj), sheet = obj)

}

# Hide sheet 'airquality';
# the sheet may be unhidden by a user from within Excel
# since veryHidden defaults to FALSE
hideSheet(wb, sheet = "airquality")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("hiddenWorksheet.xlsx")

## End(Not run)

https://mirai-solutions.ch


54 idx2aref

idx2aref Converting row and column based area references to Excel area refer-
ences

Description

Converts row & column based area references to Excel area references

Usage

idx2aref(x)

Arguments

x Numeric (integer) matrix or vector of indices. If a matrix is provided it should
have four columns with the first two columns representing the top left corner
(row and column indices) and the third & fourth column representing the bottom
right corner. If a vector is provided it will be converted to a matrix by filling the
vector into a 4-column matrix by row.

Value

Returns a character vector of corresponding Excel area references.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

aref2idx, aref, idx2cref, cref2idx, idx2col, col2idx

Examples

## Not run:
idx2aref(c(1, 1, 5, 4))

## End(Not run)

https://mirai-solutions.ch


idx2col 55

idx2col Converting column indices to Excel column names

Description

Converts column indices to Excel column names.

Usage

idx2col(x)

Arguments

x Numeric (integer) vector of column indices

Value

Returns a character vector of corresponding Excel column names. Numbers <= 0 result in the empty
string ("").

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

col2idx, idx2cref, cref2idx, idx2aref, aref2idx, aref

Examples

## Not run:
idx2col(c(1, 347))

## End(Not run)

idx2cref Converting indices to Excel cell references

Description

Converts row & column indices to Excel cell references

Usage

idx2cref(x, absRow = TRUE, absCol = TRUE)

https://mirai-solutions.ch


56 isSheetHidden-methods

Arguments

x Numeric (integer) matrix or vector of indices. If a matrix is provided it should
have two columns with the first column representing the row indices and the sec-
ond column representing the column indices (i.e. each row represents a index-
based cell reference). If a vector is provided it will be converted to a matrix by
filling the vector into a 2-column matrix by row.

absRow Boolean determining if the row index should be considered absolute. If TRUE
(default), this will result in a ’$’-prefixed row identifier.

absCol Boolean determining if the column index should be considered absolute. If TRUE
(default), this will result in a ’$’-prefixed column identifier.

Value

Returns a character vector of corresponding Excel cell references.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

cref2idx, idx2col, col2idx, idx2aref, aref2idx, aref

Examples

## Not run:
idx2cref(c(5, 8, 14, 38))

## End(Not run)

isSheetHidden-methods Checking if worksheets are hidden in a workbook

Description

Checks if the specified worksheets are hidden (but not very hidden) in a workbook.

Usage

## S4 method for signature 'workbook,character'
isSheetHidden(object,sheet)
## S4 method for signature 'workbook,numeric'
isSheetHidden(object,sheet)

https://mirai-solutions.ch


isSheetHidden-methods 57

Arguments

object The workbook to use

sheet The name or index of the sheet to check

Details

Returns TRUE if the specified sheet is hidden (not visible but also not very hidden), otherwise
FALSE. sheet is vectorized such that multiple worksheets can be queried with one method call. An
exception is thrown if the specified sheet does not exist.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, hideSheet, unhideSheet, isSheetVeryHidden, isSheetVisible

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("isSheetHidden.xlsx", create = TRUE)

# Write a couple of built-in data.frame's into sheets
# with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {

createSheet(wb, name = obj)
writeWorksheet(wb, get(obj), sheet = obj)

}

# Hide sheet 'airquality'
hideSheet(wb, sheet = "airquality")

# Check if sheet 'airquality' is hidden;
# this should obviously return TRUE
isSheetHidden(wb, "airquality")

# Check if sheet 'swiss' is hidden;
# this should obviously return FALSE
isSheetHidden(wb, "swiss")

# clean up
file.remove("isSheetHidden.xlsx")

## End(Not run)

https://mirai-solutions.ch


58 isSheetVeryHidden-methods

isSheetVeryHidden-methods

Checking if worksheets are very hidden in a workbook

Description

Checks if the specified worksheets are very hidden (but not just hidden) in a workbook.

Usage

## S4 method for signature 'workbook,character'
isSheetVeryHidden(object,sheet)
## S4 method for signature 'workbook,numeric'
isSheetVeryHidden(object,sheet)

Arguments

object The workbook to use

sheet The name or index of the sheet to check

Details

Returns TRUE if the specified named sheet is very hidden (not visible but also not just hidden),
otherwise FALSE. sheet is vectorized such that multiple worksheets can be queried with one method
call. An exception is thrown if the specified sheet does not exist.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, hideSheet, unhideSheet, isSheetHidden, isSheetVisible

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("isSheetVeryHidden.xlsx", create = TRUE)

# Write a couple of built-in data.frame's into sheets
# with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {

createSheet(wb, name = obj)
writeWorksheet(wb, get(obj), sheet = obj)

}

https://mirai-solutions.ch


isSheetVisible-methods 59

# Very hide sheet 'airquality'
hideSheet(wb, sheet = "airquality", veryHidden = TRUE)

# Hide sheet 'CO2'
hideSheet(wb, sheet = "CO2", veryHidden = FALSE)

# Check if sheet 'airquality' is very hidden;
# this should obviously return TRUE
isSheetVeryHidden(wb, "airquality")

# Check if sheet 'swiss' is very hidden;
# this should obviously return FALSE
isSheetVeryHidden(wb, "swiss")

# Check if sheet 'CO2' is very hidden;
# this should also return FALSE - the sheet
# is just hidden but not very hidden
isSheetVeryHidden(wb, "CO2")

# clean up
file.remove("isSheetVeryHidden.xlsx")

## End(Not run)

isSheetVisible-methods

Checking if worksheets are visible in a workbook

Description

Checks if the specified worksheets are visible in a workbook.

Usage

## S4 method for signature 'workbook,character'
isSheetVisible(object,sheet)
## S4 method for signature 'workbook,numeric'
isSheetVisible(object,sheet)

Arguments

object The workbook to use
sheet The name or index of the sheet to check

Details

Returns TRUE if the specified named sheet is visible (not hidden and not very hidden), otherwise
FALSE. sheet is vectorized such that multiple worksheets can be queried with one method call. An
exception is thrown if the specified sheet does not exist.



60 loadWorkbook

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, hideSheet, unhideSheet, isSheetHidden, isSheetVeryHidden

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("isSheetVisible.xlsx", create = TRUE)

# Write a couple of built-in data.frame's into sheets
# with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {

createSheet(wb, name = obj)
writeWorksheet(wb, get(obj), sheet = obj)

}

# Hide sheet 'CO2'
hideSheet(wb, sheet = "CO2", veryHidden = FALSE)

# Very hide sheet 'airquality'
hideSheet(wb, sheet = "airquality", veryHidden = TRUE)

# Check if sheet 'swiss' is visible;
# this should obviously return TRUE
isSheetVisible(wb, "swiss")

# Check if sheet 'CO2' is visible;
# this should obviously return FALSE
isSheetVisible(wb, "CO2")

# Check if sheet 'airquality' is visible;
# this should obviously return FALSE
isSheetVisible(wb, "airquality")

# clean up
file.remove("isSheetVisible.xlsx")

## End(Not run)

loadWorkbook Loading Microsoft Excel workbooks

https://mirai-solutions.ch


loadWorkbook 61

Description

Loads or creates a Microsoft Excel workbook for further manipulation.

Usage

loadWorkbook(filename, create = FALSE, password = NULL)

Arguments

filename Filename (absolute or relative) of Excel workbook to be loaded. Supported are
Excel ’97 (*.xls) and OOXML (Excel 2007+, *.xlsx) file formats. Paths are
expanded using path.expand.

create Specifies if the file should be created if it does not already exist (default is
FALSE). Note that create = TRUE has no effect if the specified file exists, i.e.
an existing file is loaded and not being recreated if create = TRUE.

password Password to use when opening password protected files. The default NULL means
no password is being used. This argument is ignored when creating new files
using create = TRUE.

Value

Returns a workbook object for further manipulation.

Note

loadWorkbook is basically just a shortcut form of new("workbook", filename, create) with
some additional error checking. As such it is the preferred way of creating workbook instances.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

References

Wikipedia: Office Open XML
https://en.wikipedia.org/wiki/Office_Open_XML

See Also

workbook, saveWorkbook

Examples

## Not run:
# Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",

package = "XLConnect"))

# Create new workbook

https://mirai-solutions.ch
https://en.wikipedia.org/wiki/Office_Open_XML


62 mergeCells-methods

wb.new <- loadWorkbook("myNewExcelFile.xlsx", create = TRUE)

# NOTE: The above statement does not write the file to disk!
# saveWorkbook(wb.new) would need to be called in order to write/save
# the file to disk!

# clean up
file.remove("myNewExcelFile.xlsx")

## End(Not run)

mergeCells-methods Merging cells

Description

Merges cells in a worksheet.

Usage

## S4 method for signature 'workbook,character'
mergeCells(object,sheet,reference)
## S4 method for signature 'workbook,numeric'
mergeCells(object,sheet,reference)

Arguments

object The workbook to use

sheet The name or index of the sheet on which to merge cells

reference A cell range specification (character) in the form ’A1:B8’

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, unmergeCells, idx2cref

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("mergeCells.xlsx", create = TRUE)

# Create a worksheet called 'merge'
createSheet(wb, name = "merge")

https://mirai-solutions.ch


mirai 63

# Merge the cells A1:B8 on the worksheet created above
mergeCells(wb, sheet = "merge", reference = "A1:B8")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("mergeCells.xlsx")

## End(Not run)

mirai Mirai Solutions GmbH

Description

Utility object to easily get to the Mirai Solutions GmbH web page. Just enter mirai in the R
console.

Usage

mirai

References

Mirai Solutions GmbH https://mirai-solutions.ch

onErrorCell-methods Behavior when error cells are detected

Description

This function defines the behavior when reading data from a worksheet and error cells are detected.

Usage

## S4 method for signature 'workbook'
onErrorCell(object,behavior)

Arguments

object The workbook to use
behavior The behavior to follow when an error cell is detected. This is normally spec-

ified by a corresponding XLC error constant, i.e. either XLC$"ERROR.WARN" or
XLC$"ERROR.STOP". XLC$"ERROR.WARN" means the error cell will be read as
missing value (NA) and a corresponding warning will be generated (this is the
default behavior). XLC$"ERROR.STOP" means that an exception will be thrown
and further execution will be stopped immediately.

https://mirai-solutions.ch


64 print-methods

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, readNamedRegion, readNamedRegionFromFile, readWorksheet,
readWorksheetFromFile

Examples

## Not run:
# errorCell xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/errorCell.xlsx",

package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Set error behavior to XLC$ERROR.WARN when detecting error cells
# Note: this is the default behavior
onErrorCell(wb, XLC$ERROR.WARN)
# Alternatively: wb$onErrorCell(XLC$ERROR.WARN)

# Read named region 'MyData' (with default header = TRUE)
data <- readNamedRegion(wb, name = "MyData")

# Now set error behavior to XLC$ERROR.STOP to immediately
# issue an exception and stop in case an error cell is
# detected
onErrorCell(wb, XLC$ERROR.STOP)
# Alternatively: wb$onErrorCell(XLC$ERROR.STOP)

# Read (again) named region 'MyData' (with default header = TRUE)
res <- try(readNamedRegion(wb, name = "MyData"))
# Did we get an error?
print(is(res, "try-error"))

## End(Not run)

print-methods Print a workbook’s filename

Description

Prints the workbook’s underlying filename.

https://mirai-solutions.ch


readNamedRegion 65

Usage

## S4 method for signature 'workbook'
print(x,...)

Arguments

x The workbook to print

... Arguments passed on to standard print

Details

Prints the specified workbook’s filename (see also the S4 filename slot of the workbook class).

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook

Examples

## Not run:
# Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",

package = "XLConnect"))

# Print the workbook's underlying filename
print(wb.mtcars)

## End(Not run)

readNamedRegion Reading named regions from a workbook

Description

Reads named regions from a workbook.

Usage

## S4 method for signature 'workbook'
readNamedRegion(object, name, header, rownames, colTypes,
forceConversion, dateTimeFormat, check.names, useCachedValues, keep, drop, simplify,
readStrategy, worksheetScope)

https://mirai-solutions.ch


66 readNamedRegion

Arguments

object The workbook to use

name The name of the named region to read

header The argument header specifies if the first row should be interpreted as column
names. The default value is TRUE.

rownames Index (numeric) or name (character) of column that should be used as row
names. The corresponding column will be removed from the data set. Defaults
to NULL which means that no row names are applied. Row names must be either
integer or character. Non-numeric columns will be coerced to character.

colTypes Column types to use when reading in the data. Specified as a character vec-
tor of the corresponding type names (see XLC; XLC$DATA_TYPE.<?>). You may
also use R class names such as numeric, character, logical and POSIXt.
The types are applied in the given order to the columns - elements are recycled
if necessary. Defaults to character(0) meaning that column types are deter-
mined automatically (see the Note section for more information).
By default, type conversions are only applied if the specified column type is a
more generic type (e.g. from Numeric to String) - otherwise NA is returned. The
forceConversion flag can be set to force conversion into less generic types
where possible.

forceConversion

logical specifying if conversions to less generic types should be forced. De-
faults to FALSE meaning that if a column is specified to be of a certain type via
the colTypes argument and a more generic type is detected in the column, then
NA will be returned (example: column is specified to be DateTime but a more
generic String is found). Specifying forceConversion = TRUE will try to en-
force a conversion - if it succeeds the corresponding (converted) value will be
returned, otherwise NA. See the Note section for some additional information.

dateTimeFormat Date/time format used when doing date/time conversions. Defaults to
getOption("XLConnect.dateTimeFormat"). This should be a POSIX format
specifier according to strptime although not all specifications have been im-
plemented yet - the most important ones however are available.

check.names logical specifying if column names of the resulting data.frame should be
checked to ensure that they are syntactically valid valid variable names and are
not duplicated. See the check.names argument of data.frame. Defaults to
TRUE.

useCachedValues

logical specifying whether to read cached formula results from the workbook
instead of re-evaluating them. This is particularly helpful in cases for reading
data produced by Excel features not supported in XLConnect like references
to external workbooks. Defaults to FALSE, which means that formulas will be
evaluated by XLConnect.

keep List of column names or indices to be kept in the output data frame. It is
possible to specify either keep or drop, but not both at the same time. De-
faults to NULL. If a vector is passed as argument, it will be wrapped into a list.
This list gets replicated to match the length of the other arguments. Exam-
ple: if name = c("NamedRegion1", "NamedRegion2", "NamedRegion3") and



readNamedRegion 67

keep = c(1,2), keep will be internally converted into list(c(1,2)) and then
replicated to match the number of named regions, i.e. keep = list(c(1,2),
c(1,2), c(1,2)). The result is that the first two columns of each named region
are kept. If keep = list(1,2) is specified, it will be replicated as list(1,2,1),
i.e. respectively the first, second and first column of the named regions "Name-
dRegion1", "NamedRegion2", "NamedRegion3" will be kept.

drop List of column names or indices to be dropped in the output data frame. It is
possible to specify either keep or drop, but not both at the same time. De-
faults to NULL. If a vector is passed as argument, it will be wrapped into a list.
This list gets replicated to match the length of the other arguments. Exam-
ple: if name = c("NamedRegion1", "NamedRegion2", "NamedRegion3") and
drop = c(1,2), drop will be internally converted into list(c(1,2)) and then
replicated to match the number of named regions, i.e. drop = list(c(1,2),
c(1,2), c(1,2)). The result is that the first two columns of each named re-
gion are dropped. If drop = list(1,2) is specified, it will be replicated as
list(1,2,1), i.e. respectively the first, second and first column of the named
regions "NamedRegion1", "NamedRegion2", "NamedRegion3" will be dropped.

simplify logical specifying if the result should be simplified, e.g. in case the data.frame
would only have one row or one column (and data types match). Simplifying
here is identical to calling unlist on the otherwise resulting data.frame (using
use.names = FALSE). The default is FALSE.

readStrategy character specifying the reading strategy to use. Currently supported strategies
are:

• "default" (default): Can handle all supported data types incl. date/time
values and can deal directly with missing value identifiers (see setMissingValue)

• "fast": Increased read performance. Date/time values are read as numeric
(number of days since 1900-01-01; fractional days represent hours, min-
utes, and seconds) and only blank cells are recognized as missing (missing
value identifiers as set in setMissingValue are ignored)

worksheetScope Optional, the name of the worksheet to use for resolving the named region

Details

The arguments name, header, and worksheetScope are vectorized. As such, multiple named re-
gions can be read with one method call. If only one single named region is read, the return value
is a data.frame.If multiple named regions are specified, the return value is a (named) list of
data.frame’s returned in the order they have been specified with the argument name.
When reading dates, if your system uses a time zone that has / had daylight saving time, cer-
tain dates / timestamps will not be read exactly as they were written. See https://poi.apache.
org/apidocs/dev/org/apache/poi/ss/usermodel/DateUtil.html#getJavaDate-double- If
worksheetScope is unspecified, the contents of the name found anywhere in the workbook will be
read. Otherwise, only a name specifically scoped to the specified sheet may be read. To read only
names defined in the global scope, pass "" as the value. If option XLConnect.setCustomAttributes
is TRUE (default FALSE), the worksheet scope in which the name was found is set as attribute
worksheetScope on the result.

https://poi.apache.org/apidocs/dev/org/apache/poi/ss/usermodel/DateUtil.html#getJavaDate-double-
https://poi.apache.org/apidocs/dev/org/apache/poi/ss/usermodel/DateUtil.html#getJavaDate-double-


68 readNamedRegion

Note

If no specific column types (see argument colTypes) are specified, readNamedRegion tries to de-
termine the resulting column types based on the read cell types. If different cell types are found in
a specific column, the most general of those is used and mapped to the corresponding R data type.
The order of data types from least to most general is Boolean (logical) < DateTime (POSIXct)
< Numeric (numeric) < String (character). E.g. if a column is read that contains cells of type
Boolean, Numeric and String then the resulting column in R would be character since character
is the most general type.

Some additional information with respect to forcing data type conversion using forceConversion
= TRUE:

• Forcing conversion from String to Boolean: TRUE is returned if and only if the target string is
"true" (ignoring any capitalization). Any other string will return FALSE.

• Forcing conversion from Numeric to DateTime: since Excel understands Dates/Times as Nu-
merics with some additional formatting, a conversion from a Numeric to a DateTime is ac-
tually possible. Numerics in this case represent the number of days since 1900-01-00 (yes,
day 00! - see https://web.archive.org/web/20240821110422/http://www.cpearson.
com/excel/datetime.htm). Note that in R 0 is represented as 1899-12-31 since there is no
1900-01-00. Fractional days represent hours, minutes, and seconds.

Author(s)

Martin Studer
Thomas Themel
Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

References

What are named regions/ranges?
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/
named_ranges_in_microsoft_excel.htm
How to create named regions/ranges?
https://www.youtube.com/watch?v=iAE9a0uRtpM

See Also

workbook, readWorksheet, writeNamedRegion,
writeWorksheet, readNamedRegionFromFile, readTable, onErrorCell

Examples

## Not run:
## Example 1:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook

https://web.archive.org/web/20240821110422/http://www.cpearson.com/excel/datetime.htm
https://web.archive.org/web/20240821110422/http://www.cpearson.com/excel/datetime.htm
https://mirai-solutions.ch
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
https://www.youtube.com/watch?v=iAE9a0uRtpM


readNamedRegionFromFile 69

wb <- loadWorkbook(demoExcelFile)

# Read named region 'mtcars' (with default header = TRUE)
data <- readNamedRegion(wb, name = "mtcars")

## Example 2;
# conversion xlsx file from demoFiles subfolder of package XLConnect
excelFile <- system.file("demoFiles/conversion.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(excelFile)

# Read named region 'conversion' with pre-specified column types
# Note: in the worksheet all data was entered as strings!
# forceConversion = TRUE is used to force conversion from String
# into the less generic data types Numeric, DateTime & Boolean
df <- readNamedRegion(wb, name = "conversion", header = TRUE,

colTypes = c(XLC$DATA_TYPE.NUMERIC,
XLC$DATA_TYPE.DATETIME,
XLC$DATA_TYPE.BOOLEAN),

forceConversion = TRUE,
dateTimeFormat = "%Y-%m-%d %H:%M:%S")

## Example 3:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read the columns 1, 3 and 5 of the named region 'mtcars' (with default header = TRUE)
data <- readNamedRegion(wb, name = "mtcars", keep=c(1,3,5))

# activate attributes (used by worksheet scope)
options(XLConnect.setCustomAttributes = TRUE)

# read the iris dataset from worksheet-scoped named region 'iris'
wb <- loadWorkbook("demoFiles/iris.xlsx")
data <- readNamedRegion(wb, name = "iris", worksheetScope = "iris")

# show worksheet scope attribute
attr(data, "worksheetScope")

## End(Not run)

readNamedRegionFromFile

Reading named regions from an Excel file (wrapper function)



70 readNamedRegionFromFile

Description

Reads named regions from an Excel file.

Usage

readNamedRegionFromFile(file, ...)

Arguments

file The file name of the workbook to read

... Arguments passed to readNamedRegion

Details

This is a convenience wrapper to read named regions from a file without creating an intermediate
workbook object. See readNamedRegion for more details.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

readNamedRegion, readWorksheetFromFile, writeNamedRegionToFile,
writeWorksheetToFile, onErrorCell

Examples

## Not run:
# multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx",

package = "XLConnect")

# Load a single named region into a single data.frame.
df <- readNamedRegionFromFile(demoExcelFile, name="Iris")

# Load multiple regions at once - returns a (named) list
# of data.frames.
df <- readNamedRegionFromFile(demoExcelFile,

name=c("Calendar", "Iris", "IQ"))

## End(Not run)

https://mirai-solutions.ch


readTable 71

readTable Reading Excel tables from a workbook

Description

Reads Excel tables (Office 2007+) from a workbook.

Usage

## S4 method for signature 'workbook,numeric'
readTable(object, sheet, table, header, rownames, colTypes, forceConversion,
dateTimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)
## S4 method for signature 'workbook,character'
readTable(object, sheet, table, header, rownames, colTypes, forceConversion,
dateTimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)

Arguments

object The workbook to use

sheet The index or name of the worksheet on which to look for the specified table

table The name of the table to read

header The argument header specifies if the first row should be interpreted as column
names. The default value is TRUE.

rownames Index (numeric) or name (character) of column that should be used as row
names. The corresponding column will be removed from the data set. Defaults
to NULL which means that no row names are applied.

colTypes Column types to use when reading in the data. Specified as a character vec-
tor of the corresponding type names (see XLC; XLC$DATA_TYPE.<?>). You may
also use R class names such as numeric, character, logical and POSIXt.
The types are applied in the given order to the columns - elements are recycled
if necessary. Defaults to character(0) meaning that column types are deter-
mined automatically (see the Note section for more information).
By default, type conversions are only applied if the specified column type is a
more generic type (e.g. from Numeric to String) - otherwise NA is returned. The
forceConversion flag can be set to force conversion into less generic types
where possible.

forceConversion

logical specifying if conversions to less generic types should be forced. De-
faults to FALSE meaning that if a column is specified to be of a certain type via
the colTypes argument and a more generic type is detected in the column, then
NA will be returned (example: column is specified to be DateTime but a more
generic String is found). Specifying forceConversion = TRUE will try to en-
force a conversion - if it succeeds the corresponding (converted) value will be
returned, otherwise NA. See the Note section for some additional information.



72 readTable

dateTimeFormat Date/time format used when doing date/time conversions. Defaults to
getOption("XLConnect.dateTimeFormat"). This should be a POSIX format
specifier according to strptime although not all specifications have been im-
plemented yet - the most important ones however are available.

check.names logical specifying if column names of the resulting data.frame should be
checked to ensure that they are syntactically valid valid variable names and are
not duplicated. See the check.names argument of data.frame. Defaults to
TRUE.

useCachedValues

logical specifying whether to read cached formula results from the workbook
instead of re-evaluating them. This is particularly helpful in cases for reading
data produced by Excel features not supported in XLConnect like references
to external workbooks. Defaults to FALSE, which means that formulas will be
evaluated by XLConnect.

keep List of column names or indices to be kept in the output data frame. It is possible
to specify either keep or drop, but not both at the same time. Defaults to NULL.
If a vector is passed as argument, it will be wrapped into a list. This list gets
replicated to match the length of the other arguments.

drop List of column names or indices to be dropped in the output data frame. It is
possible to specify either keep or drop, but not both at the same time. Defaults
to NULL. If a vector is passed as argument, it will be wrapped into a list. This list
gets replicated to match the length of the other arguments.

simplify logical specifying if the result should be simplified, e.g. in case the data.frame
would only have one row or one column (and data types match). Simplifying
here is identical to calling unlist on the otherwise resulting data.frame (using
use.names = FALSE). The default is FALSE.

readStrategy character specifying the reading strategy to use. Currently supported strategies
are:

• "default" (default): Can handle all supported data types incl. date/time
values and can deal directly with missing value identifiers (see setMissingValue)

• "fast": Increased read performance. Date/time values are read as numeric
(number of days since 1900-01-01; fractional days represent hours, min-
utes, and seconds) and only blank cells are recognized as missing (missing
value identifiers as set in setMissingValue are ignored)

Note

If no specific column types (see argument colTypes) are specified, readNamedRegion tries to de-
termine the resulting column types based on the read cell types. If different cell types are found in
a specific column, the most general of those is used and mapped to the corresponding R data type.
The order of data types from least to most general is Boolean (logical) < DateTime (POSIXct)
< Numeric (numeric) < String (character). E.g. if a column is read that contains cells of type
Boolean, Numeric and String then the resulting column in R would be character since character
is the most general type.

Some additional information with respect to forcing data type conversion using forceConversion
= TRUE:



readWorksheet-methods 73

• Forcing conversion from String to Boolean: TRUE is returned if and only if the target string is
"true" (ignoring any capitalization). Any other string will return FALSE.

• Forcing conversion from Numeric to DateTime: since Excel understands Dates/Times as Nu-
merics with some additional formatting, a conversion from a Numeric to a DateTime is actu-
ally possible. Numerics in this case represent the number of days since 1900-01-01. Fractional
days represent hours, minutes, and seconds.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

References

Overview of Excel tables
https://support.microsoft.com/en-us/office/overview-of-excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c?
ocmsassetid=ha010048546&correlationid=ecf0d51a-596f-42e5-9c05-8653648bb180&ui=en-us&
rs=en-us&ad=us

See Also

workbook, readNamedRegion, readWorksheet, writeNamedRegion,
writeWorksheet, readNamedRegionFromFile, onErrorCell

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read table 'MtcarsTable' from sheet 'mtcars_table'
data <- readTable(wb, sheet = "mtcars_table", table = "MtcarsTable")

## End(Not run)

readWorksheet-methods Reading data from worksheets

Description

Reads data from worksheets of a workbook.

https://mirai-solutions.ch
https://support.microsoft.com/en-us/office/overview-of-excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c?ocmsassetid=ha010048546&correlationid=ecf0d51a-596f-42e5-9c05-8653648bb180&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/overview-of-excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c?ocmsassetid=ha010048546&correlationid=ecf0d51a-596f-42e5-9c05-8653648bb180&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/overview-of-excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c?ocmsassetid=ha010048546&correlationid=ecf0d51a-596f-42e5-9c05-8653648bb180&ui=en-us&rs=en-us&ad=us


74 readWorksheet-methods

Usage

## S4 method for signature 'workbook,numeric'
readWorksheet(object,sheet,startRow,startCol,endRow,endCol,autofitRow,autofitCol,
region,header,rownames,colTypes,forceConversion,dateTimeFormat,check.names,
useCachedValues,keep,drop, simplify, readStrategy)
## S4 method for signature 'workbook,character'
readWorksheet(object,sheet,startRow,startCol,endRow,endCol,autofitRow,autofitCol,
region,header,rownames,colTypes,forceConversion,dateTimeFormat,check.names,
useCachedValues,keep,drop, simplify, readStrategy)

Arguments

object The workbook to use

sheet The name or index of the worksheet to read from

startRow The index of the first row to read from. Defaults to 0 meaning that the start row
is determined automatically.

startCol The index of the first column to read from. Defaults to 0 meaning that the start
column is determined automatically.

endRow The index of the last row to read from. Defaults to 0 meaning that the end row
is determined automatically.

endCol The index of the last column to read from. Defaults to 0 meaning that the end
column is determined automatically.

autofitRow logical specifying if leading and trailing empty rows should be skipped. De-
faults to TRUE.

autofitCol logical specifying if leading and trailing empty columns should be skipped.
Defaults to TRUE.

region A range specifier in the form ’A10:B18’. This provides an alternative way to
specify startRow, startCol, endRow and endCol. Range specifications take
precedence over index specifications.

header Interpret the first row of the specified area as column headers. The default is
TRUE.

rownames Index (numeric) or name (character) of column that should be used as row
names. The corresponding column will be removed from the data set. Defaults
to NULL which means that no row names are applied. Row names must be either
integer or character. Non-numeric columns will be coerced to character.

colTypes Column types to use when reading in the data. Specified as a character vec-
tor of the corresponding type names (see XLC; XLC$DATA_TYPE.<?>). You may
also use R class names such as numeric, character, logical and POSIXt.
The types are applied in the given order to the columns - elements are recycled
if necessary. Defaults to character(0) meaning that column types are deter-
mined automatically (see the Note section for more information).
By default, type conversions are only applied if the specified column type is a
more generic type (e.g. from Numeric to String) - otherwise NA is returned. The
forceConversion flag can be set to force conversion into less generic types
where possible.



readWorksheet-methods 75

forceConversion

logical specifying if conversions to less generic types should be forced. De-
faults to FALSE meaning that if a column is specified to be of a certain type via
the colTypes argument and a more generic type is detected in the column, then
NA will be returned (example: column is specified to be DateTime but a more
generic String is found). Specifying forceConversion = TRUE will try to en-
force a conversion - if it succeeds the corresponding (converted) value will be
returned, otherwise NA. See the Note section for some additional information.

dateTimeFormat Date/time format used when doing date/time conversions. Defaults to
getOption("XLConnect.dateTimeFormat"). This should be a POSIX format
specifier according to strptime although not all specifications have been im-
plemented yet - the most important ones however are available. When using
the ’%OS’ specification for fractional seconds (without an additional integer) 3
digits will be used by default (getOption("digits.secs") is not considered).

check.names logical specifying if column names of the resulting data.frame should be
checked to ensure that they are syntactically valid variable names and are not
duplicated. See the check.names argument of data.frame. Defaults to TRUE.

useCachedValues

logical specifying whether to read cached formula results from the workbook
instead of re-evaluating them. This is particularly helpful in cases for reading
data produced by Excel features not supported in XLConnect like references
to external workbooks. Defaults to FALSE, which means that formulas will be
evaluated by XLConnect.

keep Vector of column names or indices to be kept in the output data frame. It is
possible to specify either keep or drop, but not both at the same time. Defaults
to NULL. If a vector is passed as argument, it will be wrapped into a list. This
list gets replicated to match the length of the other arguments. Example: if
sheet = c("Sheet1", "Sheet2", "Sheet3") and keep = c(1,2), keep will be
internally converted into list(c(1,2)) and then replicated to match the number
of sheets, i.e. keep = list(c(1,2), c(1,2), c(1,2)). The result is that the
first two columns of each sheet are kept. If keep = list(1,2) is specified, it
will be replicated as list(1,2,1), i.e. respectively the first, second and first
column of the sheets "Sheet1", "Sheet2", "Sheet3" will be kept.

drop Vector of column names or indices to be dropped in the output data frame. It is
possible to specify either keep or drop, but not both at the same time. Defaults
to NULL. If a vector is passed as argument, it will be wrapped into a list. This
list gets replicated to match the length of the other arguments. Example: if
sheet = c("Sheet1", "Sheet2", "Sheet3") and drop = c(1,2), drop will be
internally converted into list(c(1,2)) and then replicated to match the number
of sheets, i.e. drop = list(c(1,2), c(1,2), c(1,2)). The result is that the
first two columns of each sheet are dropped. If drop = list(1,2) is specified,
it will be replicated as list(1,2,1), i.e. respectively the first, second and first
column of the sheets "Sheet1", "Sheet2", "Sheet3" will be dropped.

simplify logical specifying if the result should be simplified, e.g. in case the data.frame
would only have one row or one column (and data types match). Simplifying
here is identical to calling unlist on the otherwise resulting data.frame (using
use.names = FALSE). The default is FALSE.



76 readWorksheet-methods

readStrategy character specifying the reading strategy to use. Currently supported strategies
are:

• "default" (default): Can handle all supported data types incl. date/time
values and can deal directly with missing value identifiers (see setMissingValue)

• "fast": Increased read performance. Date/time values are read as numeric
(number of days since 1900-01-01; fractional days represent hours, min-
utes, and seconds) and only blank cells are recognized as missing (missing
value identifiers as set in setMissingValue are ignored)

Details

Reads data from the worksheet specified by sheet. Data is read starting at the top left corner
specified by startRow and startCol down to the bottom right corner specified by endRow and
endCol. If header = TRUE, the first row is interpreted as column names of the resulting data.frame.
If startRow <= 0 then the first available row in the sheet is assumed. If endRow = 0 then the last
available row in the sheet is assumed. For endRow = -n with n > 0, the ’last row’ - n rows is
assumed. This is useful in cases where you want to skip the last n rows. If startCol <= 0 then
the minimum column between startRow and endRow is assumed. If endCol = 0 then the maximum
column between startRow and endRow is assumed. If endCol = -n with n > 0, the maximum
column between startRow and endRow except for the last n columns is assumed.

In other words, if no boundaries are specified readWorksheet assumes the "bounding box" of the
data as the corresponding boundaries.
The arguments autofitRow and autofitCol (both defaulting to TRUE) can be used to skip leading
and trailing empty rows even in case startRow, endRow, startCol and endCol are specified to val-
ues > 0. This can be useful if data is expected within certain given boundaries but the exact location
is not available.

If all four coordinate arguments are missing this behaves as above with startRow = 0, startCol =
0, endRow = 0 and endCol = 0. In this case readWorksheet assumes the "bounding box" of the data
as the corresponding boundaries.

All arguments (except object) are vectorized. As such, multiple worksheets (and also multiple
data regions from the same worksheet) can be read with one method call. If only one single data
region is read, the return value is a data.frame. If multiple data regions are specified, the return
value is a list of data.frame’s returned in the order they have been specified. If worksheets have
been specified by name, the list will be a named list named by the corresponding worksheets.

Note

If no specific column types (see argument colTypes) are specified, readWorksheet tries to deter-
mine the resulting column types based on the read cell types. If different cell types are found in a
specific column, the most general of those is used and mapped to the corresponding R data type.
The order of data types from least to most general is Boolean (logical) < DateTime (POSIXct)
< Numeric (numeric) < String (character). E.g. if a column is read that contains cells of type
Boolean, Numeric and String then the resulting column in R would be character since character
is the most general type.



readWorksheet-methods 77

Some additional information with respect to forcing data type conversion using forceConversion
= TRUE:

• Forcing conversion from String to Boolean: TRUE is returned if and only if the target string is
"true" (ignoring any capitalization). Any other string will return FALSE.

• Forcing conversion from Numeric to DateTime: since Excel understands Dates/Times as Nu-
merics with some additional formatting, a conversion from a Numeric to a DateTime is ac-
tually possible. Numerics in this case represent the number of days since 1900-01-00 (yes,
day 00! - see https://web.archive.org/web/20240821110422/http://www.cpearson.
com/excel/datetime.htm). Note that in R 0 is represented as 1899-12-31 since there is no
1900-01-00. Fractional days represent hours, minutes, and seconds.

Author(s)

Martin Studer
Thomas Themel
Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, writeWorksheet, readNamedRegion, writeNamedRegion,
readWorksheetFromFile, readTable, onErrorCell

Examples

## Not run:
## Example 1:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read worksheet 'mtcars' (providing no specific area bounds;
# with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars")

## Example 2:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read worksheet 'mtcars' (providing area bounds; with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars", startRow = 1, startCol = 3,

endRow = 15, endCol = 8)

https://web.archive.org/web/20240821110422/http://www.cpearson.com/excel/datetime.htm
https://web.archive.org/web/20240821110422/http://www.cpearson.com/excel/datetime.htm
https://mirai-solutions.ch


78 readWorksheetFromFile

## Example 3:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read worksheet 'mtcars' (providing area bounds using the region argument;
# with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars", region = "C1:H15")

## Example 4:
# conversion xlsx file from demoFiles subfolder of package XLConnect
excelFile <- system.file("demoFiles/conversion.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(excelFile)

# Read worksheet 'Conversion' with pre-specified column types
# Note: in the worksheet all data was entered as strings!
# forceConversion = TRUE is used to force conversion from String
# into the less generic data types Numeric, DateTime & Boolean
df <- readWorksheet(wb, sheet = "Conversion", header = TRUE,

colTypes = c(XLC$DATA_TYPE.NUMERIC,
XLC$DATA_TYPE.DATETIME,
XLC$DATA_TYPE.BOOLEAN),

forceConversion = TRUE,
dateTimeFormat = "%Y-%m-%d %H:%M:%S")

## Example 5:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read the columns 1, 3 and 5 from the sheet 'mtcars' (with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars", keep=c(1,3,5))

## End(Not run)

readWorksheetFromFile Reading data from worksheets in an Excel file (wrapper function)

Description

Reads data from worksheets in an Excel file.



readWorksheetFromFile 79

Usage

readWorksheetFromFile(file, ...)

Arguments

file The path name of the file to read from.

... Arguments passed to readWorksheet

Details

See readWorksheet for more information.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

readWorksheet, readNamedRegionFromFile, writeWorksheetToFile,
writeNamedRegionToFile, onErrorCell

Examples

## Not run:
# multiregion xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx",

package = "XLConnect")

# Read single area from first sheet of existing file,
# "B2:C3" in Excel speak
df.one <- readWorksheetFromFile(demoExcelFile, sheet = 1,

header = FALSE, startCol = 2,
startRow = 2, endCol = 3,
endRow = 3)

# Read three data sets in one from known positions
dflist <- readWorksheetFromFile(demoExcelFile,

sheet = c("FirstSheet",
"FirstSheet",
"SecondSheet"),

header = TRUE,
startRow = c(2,2,3),
startCol = c(2,5,2),
endCol = c(5,8,6),
endRow = c(9,15,153))

## End(Not run)

https://mirai-solutions.ch


80 removeName-methods

removeName-methods Removing names from workbooks

Description

Removes a named range reference from a workbook.

Usage

## S4 method for signature 'workbook'
removeName(object,name,worksheetScope)

Arguments

object The workbook to use
name The name to delete
worksheetScope Optional - the name of the worksheet in which the name is scoped; useful if

different sheets have locally-scoped named ranges with the same name.

Details

Removes the named range reference name from the specified workbook object if it does exist. Data
in the referenced cells remains unchanged. Multiple names can be specified to be removed. Use
worksheetScope = "" to only target names defined in the global scope.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createName, existsName,
getDefinedNames, readNamedRegion, writeNamedRegion

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Remove the named region called 'mtcars' from the above file
# (this named region is defined as 'mtcars!$A$1:$K$33')
removeName(wb, name = "mtcars")

## End(Not run)

https://mirai-solutions.ch


removePane-methods 81

removePane-methods Removing panes from worksheet

Description

Removes the split pane/freeze pane from the specified worksheet.

Usage

## S4 method for signature 'workbook,character'
removePane(object,sheet)
## S4 method for signature 'workbook,numeric'
removePane(object,sheet)

Arguments

object The workbook to use

sheet The name or index of the sheet from which to remove the split pane/freeze pane

Note

To keep an area of a worksheet visible while you scroll to another area of the worksheet, you can
lock specific rows or columns in one area by freezing or splitting panes.

When you freeze panes, you keep specific rows or columns visible when you scroll in the worksheet.
For example, you might want to keep row and column labels visible as you scroll.

When you split panes, you create separate worksheet areas that you can scroll within, while rows
or columns in the non-scrolled area remain visible.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

References

How to create a freeze pane/split pane in Office 2007 https://support.microsoft.com/en-us/
office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?
ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&
rs=en-us&ad=us

See Also

workbook createFreezePane createSplitPane

https://mirai-solutions.ch
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/freeze-panes-to-lock-rows-and-columns-dab2ffc9-020d-4026-8121-67dd25f2508f?ocmsassetid=hp001217048&correlationid=b4f5baeb-b622-4487-a96f-514d2f00208a&ui=en-us&rs=en-us&ad=us


82 removeSheet-methods

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("removePaneTest.xlsx", create = TRUE)

# Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

# Create a split pane on Sheet1, with coordinates (10000, 5000) expressed as 1/20th of a point,
# 10 (-> J) as left column visible in right pane and 10 as top row visible in bottom pane
createSplitPane(wb, "Sheet1", 10000, 5000, 10, 10)

# Remove the split pane from Sheet1
removePane(wb, "Sheet1")

# Save workbook (this actually writes the file to disk). Now the workbook has no split pane.
saveWorkbook(wb)

# clean up
file.remove("removePaneTest.xlsx")

## End(Not run)

removeSheet-methods Removing worksheets from workbooks

Description

Removes a worksheet from a workbook.

Usage

## S4 method for signature 'workbook,character'
removeSheet(object,sheet)
## S4 method for signature 'workbook,numeric'
removeSheet(object,sheet)

Arguments

object The workbook to use

sheet The name or index of the sheet to remove

Note

When removing a worksheet that is the currently active sheet then XLConnect resets the active
sheet to the first possible worksheet in the workbook.
Also note that deleting worksheets may result in invalid name references.



renameSheet-methods 83

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createSheet, existsSheet, getSheets, renameSheet, cloneSheet, setActiveSheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Remove the worksheet called 'mtcars' from the above file
removeSheet(wb, sheet = "mtcars")

## End(Not run)

renameSheet-methods Renaming worksheets from workbooks

Description

Renames a worksheet from a workbook.

Usage

## S4 method for signature 'workbook,character'
renameSheet(object,sheet,newName)
## S4 method for signature 'workbook,numeric'
renameSheet(object,sheet,newName)

Arguments

object The workbook to use

sheet The name or index of the sheet to rename

newName The new name of the sheet

Note

Note that renaming worksheets may result in invalid name references.

https://mirai-solutions.ch


84 saveWorkbook-methods

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createSheet, existsSheet, getSheets, removeSheet, cloneSheet, setActiveSheet

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Rename the worksheet called 'mtcars' from the above file to 'MyCars'
renameSheet(wb, sheet = "mtcars", newName = "MyCars")

## End(Not run)

saveWorkbook-methods Saving Microsoft Excel workbooks

Description

Saves a workbook to the corresponding Excel file. This method actually writes the workbook object
to disk.

Usage

## S4 method for signature 'workbook,missing'
saveWorkbook(object,file)
## S4 method for signature 'workbook,character'
saveWorkbook(object,file)

Arguments

object The workbook to save
file The file to which to save the workbook ("save as"). If not specified (missing),

the workbook will be saved to the workbook’s underlying file which is the file
specified in loadWorkbook (also see the workbook class for more information).
Note that due to currently missing functionality in Apache POI, workbooks can
only be saved in the same file format - i.e. if the workbooks underlying file for-
mat is xls, then the file argument may only specify another xls file. Also note
that when specifying the file argument the workbook’s underlying filename
changes to reflect the "save as" behavior.
Paths are expanded using path.expand.

https://mirai-solutions.ch


saveWorkbook-methods 85

Details

Saves the specified workbook object to disk.

Note

As already mentioned in the documentation of the workbook class, a workbook’s underlying Excel
file is not saved (or being created in case the file did not exist and create = TRUE has been specified)
unless the saveWorkbook method has been called on the object. This provides more flexibility to the
user to decide when changes are saved and also provides better performance in that several changes
can be written in one go (normally at the end, rather than after every operation causing the file to
be rewritten again completely each time). This is due to the fact that workbooks are manipulated
in-memory and are only written to disk with specifically calling saveWorkbook.

Further note that calling saveWorkbook more than once leads to an exception. This is due to a
current issue in the underlying POI libraries. However, with XLConnect there should be no need
to call saveWorkbook more than once so virtually this is no issue.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, loadWorkbook

Examples

## Not run:
# Create a new workbook 'saveMe.xlsx'
# (assuming the file to not exist already)
wb <- loadWorkbook("saveMe.xlsx", create = TRUE)

# Create a worksheet called 'mtcars'
createSheet(wb, name = "mtcars")

# Write built-in dataset 'mtcars' to sheet 'mtcars' created above
writeWorksheet(wb, mtcars, sheet = "mtcars")

# Save workbook - this actually writes the file 'saveMe.xlsx' to disk
saveWorkbook(wb)

# clean up
file.remove("saveMe.xlsx")

## End(Not run)

https://mirai-solutions.ch


86 setActiveSheet-methods

setActiveSheet-methods

Setting the active worksheet in a workbook

Description

Sets the active worksheet of a workbook.

Usage

## S4 method for signature 'workbook,character'
setActiveSheet(object,sheet)
## S4 method for signature 'workbook,numeric'
setActiveSheet(object,sheet)

Arguments

object The workbook to use

sheet The name or index of the sheet to activate

Note

The active worksheet of a workbook is the worksheet that is displayed when the corresponding
Excel file is opened.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, createSheet, removeSheet, renameSheet, existsSheet, getSheets

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Sets the active sheet to the sheet 'mtcars3'
setActiveSheet(wb, sheet = "mtcars3")

## End(Not run)

https://mirai-solutions.ch


setAutoFilter-methods 87

setAutoFilter-methods Setting auto-filters on worksheets

Description

Sets an auto-filter on a specified worksheet.

Usage

## S4 method for signature 'workbook,character'
setAutoFilter(object,sheet,reference)
## S4 method for signature 'workbook,numeric'
setAutoFilter(object,sheet,reference)

Arguments

object The workbook to use

sheet The name or index of the sheet on which to set the auto-filter

reference A cell range specification (character) in the form ’A1:B8’

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("autofilter.xlsx", create = TRUE)

# Create a worksheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' on the sheet called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$A$1")

# Write built-in data set 'mtcars' to the above defined named region
# (using header = TRUE)
writeNamedRegion(wb, mtcars, name = "mtcars")

# Set an auto-filter for the named region written above
setAutoFilter(wb, sheet = "mtcars", reference = aref("A1", dim(mtcars)))

https://mirai-solutions.ch


88 setBorder-methods

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("autofilter.xlsx")

## End(Not run)

setBorder-methods Specifying borders for cell styles

Description

Specifies borders for a cellstyle.

Usage

## S4 method for signature 'cellstyle'
setBorder(object,side,type,color)

Arguments

object The cellstyle to edit

side A vector with any combination of {"bottom", "left", "right", "top", "all"}

type Specifies the border type to be used - it is normally specified by a corresponding
XLC constant (see the XLC border constant, e.g. XLC$"BORDER.MEDIUM_DASHED")

color Defines the border color and is normally also specified via an XLC constant.

Details

Specifies the border for a cellstyle. Note that the arguments type and color should be of the
same length as side. In other words, for each specified side there should be a corresponding
specification of type and color. If this is not the case the arguments will be automatically replicated
to the length of side.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

https://mirai-solutions.ch


setCellFormula-methods 89

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setBorder.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a custom anonymous cell style
cs <- createCellStyle(wb)

# Specify the border for the cell style created above
setBorder(cs, side = c("bottom", "right"), type = XLC$"BORDER.THICK",

color = c(XLC$"COLOR.BLACK", XLC$"COLOR.RED"))

# Set the cell style created above for the top left cell (A1) in the
# 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

# Save the workbook
saveWorkbook(wb)

# clean up
file.remove("setBorder.xlsx")

## End(Not run)

setCellFormula-methods

Setting cell formulas

Description

Sets cell formulas for specific cells in a workbook.

Usage

## S4 method for signature 'workbook,character'
setCellFormula(object,sheet,row,col,formula)
## S4 method for signature 'workbook,numeric'
setCellFormula(object,sheet,row,col,formula)

Arguments

object The workbook to use
sheet Name or index of the sheet the cell is on
row Row index of the cell to edit
col Column index of the cell to edit
formula The formula to apply to the cell, without the initial = character used in Excel



90 setCellFormula-methods

Details

Note that the arguments are vectorized such that multiple cells can be set with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getCellFormula,

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setCellFormula.xls", create = TRUE)

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' referring to the sheet
# called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$A$1")

# Write built-in data set 'mtcars' to the above defined named region.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Now, let us get Excel to calculate average weights.
# Where did we write the dataset?
corners <- getReferenceCoordinatesForName(wb, "mtcars")
# Put the average under the wt column
colIndex <- which(names(mtcars) == "wt")
rowIndex <- corners[2,1] + 1

# Construct the input range & formula
input <- paste(idx2cref(c(corners[1,1], colIndex,

corners[2,1], colIndex)), collapse=":")
formula <- paste("AVERAGE(", input, ")", sep="")

setCellFormula(wb, "mtcars", rowIndex, colIndex, formula)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("setCellFormula.xls")

## End(Not run)

https://mirai-solutions.ch


setCellStyle-methods 91

setCellStyle-methods Setting cell styles

Description

Sets cell styles for specific cells in a workbook.

Usage

## S4 method for signature 'workbook,missing,character'
setCellStyle(object,formula,sheet,row,col,cellstyle)
## S4 method for signature 'workbook,missing,numeric'
setCellStyle(object,formula,sheet,row,col,cellstyle)
## S4 method for signature 'workbook,character,missing'
setCellStyle(object,formula,sheet,row,col,cellstyle)

Arguments

object The workbook to use

formula A formula specification in the form Sheet!B8:C17. Use either the argument
formula or the combination of sheet, row and col.

sheet Name or index of the sheet the cell is on. Use either the argument formula or
the combination of sheet, row and col.

row Row index of the cell to apply the cellstyle to.

col Column index of the cell to apply the cellstyle to.

cellstyle cellstyle to apply

Details

Sets the specified cellstyle for the specified cell (row, col) on the specified sheet or alternatively
for the cells referred to by formula. Note that the arguments are vectorized such that multiple cells
can be styled with one method call. Use either the argument formula or the combination of sheet,
row and col.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, createCellStyle, setDataFormat, setBorder,
setFillBackgroundColor, setFillForegroundColor, setFillPattern,
setWrapText

https://mirai-solutions.ch


92 setCellStyle-methods

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setCellStyle.xlsx", create = TRUE)

# We don't set a specific style action in this demo, so the default
# 'XLConnect' will be used (XLC$"STYLE_ACTION.XLCONNECT")

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' referring to the sheet
# called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$C$4")

# Write built-in data set 'mtcars' to the above defined named region.
# This will use the default style action 'XLConnect'.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Now let's color all weight cells of cars with a weight > 3.5 in red
# (mtcars$wt > 3.5)

# First, create a corresponding (named) cell style
heavyCar <- createCellStyle(wb, name = "HeavyCar")

# Specify the cell style to use a solid foreground color
setFillPattern(heavyCar, fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(heavyCar, color = XLC$"COLOR.RED")

# Which cars have a weight > 3.5 ?
rowIndex <- which(mtcars$wt > 3.5)

# NOTE: The mtcars data.frame has been written offset with
# top left cell C4 - and we have also written a header row!
# So, let's take that into account appropriately. Obviously,
# the two steps could be combined directly into one ...
rowIndex <- rowIndex + 4

# The same holds for the column index
colIndex <- which(names(mtcars) == "wt") + 2

# Set the 'HeavyCar' cell style for the corresponding cells.
# Note: the row and col arguments are vectorized!
setCellStyle(wb, sheet = "mtcars", row = rowIndex, col = colIndex,

cellstyle = heavyCar)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up



setCellStyleForType-methods 93

file.remove("setCellStyle.xlsx")

## End(Not run)

setCellStyleForType-methods

Setting the cell style per data type for the DATATYPE style action

Description

Sets the cell style for a specific data type as used by the DATATYPE style action.

Usage

## S4 method for signature 'workbook'
setCellStyleForType(object,type,style)

Arguments

object The workbook to use

type The data type for which to set the style

style The cellstyle to set

Details

Based on the (cell) data type the DATATYPE style action (see setStyleAction) sets the cellstyle
for the corresponding cells. The data type is normally specified via a corresponding data type
constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getCellStyleForType, setStyleAction

Examples

## Not run:
file.copy(system.file("demoFiles/template2.xlsx",

package = "XLConnect"),
"datatype.xlsx", overwrite = TRUE)

# Load workbook
wb <- loadWorkbook("datatype.xlsx")

https://mirai-solutions.ch


94 setColumnWidth-methods

# Create a new cell style to be used
cs <- createCellStyle(wb, name = "mystyle")

# Set data format (number format) as numbers with aligned fractions
setDataFormat(cs, format = "# ???/???")

# Define the above created cell style as style to be used for
# numerics
setCellStyleForType(wb, type = XLC$"DATA_TYPE.NUMERIC", style = cs)
# Could also say cs <- setCellStyleForType(wb, "numeric")

# Set style action to 'datatype'
setStyleAction(wb, XLC$"STYLE_ACTION.DATATYPE")

# Write built-in data set 'mtcars' to the named region
# 'mtcars' as defined by the Excel template.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("datatype.xlsx")

## End(Not run)

setColumnWidth-methods

Setting the width of a column in a worksheet

Description

Sets the width of a column in a worksheet.

Usage

## S4 method for signature 'workbook,character'
setColumnWidth(object,sheet,column,width)
## S4 method for signature 'workbook,numeric'
setColumnWidth(object,sheet,column,width)

Arguments

object The workbook to use

sheet The name or index of the sheet

column The index of the column to resize

width The width of the specified column in units of 1/256th of a character width. If
width = -1 (default), the column is auto-sized. If negative otherwise, the col-
umn will be sized to the sheet’s default column width.



setDataFormat-methods 95

Details

Note that the arguments sheet, column and width are vectorized. As such the column width of
multiple columns (potentially on different sheets) can be set with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setRowHeight

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Sets the column width of the 3rd column on sheet 'mtcars'
# to 4000/256th (= 15.625) character width
setColumnWidth(wb, sheet = "mtcars", column = 3, width = 4000)

## End(Not run)

setDataFormat-methods Specifying custom data formats for cell styles

Description

Specifies a custom data format for a cellstyle.

Usage

## S4 method for signature 'cellstyle'
setDataFormat(object,format)

Arguments

object The cellstyle to use

format A data format string

Details

Specifies the data format to be used by the corresponding cellstyle. Data formats are specified
the standard Excel way. Refer to the Excel help or to the link below for more information.

https://mirai-solutions.ch


96 setDataFormatForType-methods

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, setStyleAction

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setDataFormat.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a dummy data set with the current date/time (as POSIXct)
now <- data.frame(Now = Sys.time())

# Write the value to the 'cellstyles' worksheet in the top left
# corner (cell A1)
writeWorksheet(wb, now, sheet = "cellstyles", startRow = 1,

startCol = 1, header = FALSE)

# Create a custom anonymous cell style
cs <- createCellStyle(wb)

# Specify a custom data format
setDataFormat(cs, format = "dddd d-m-yyyy h:mm AM/PM")

# Set the cell style created above for the top left cell (A1) in
# the 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

# Set column width to display whole time/date string
setColumnWidth(wb, sheet = "cellstyles", column = 1, width = 6000)

# Save the workbook
saveWorkbook(wb)

# clean up
file.remove("setDataFormat.xlsx")

## End(Not run)

setDataFormatForType-methods

Setting the data format for the DATA_FORMAT_ONLY style action

https://mirai-solutions.ch


setDataFormatForType-methods 97

Description

Sets the data format for a specific data type as used by the DATA_FORMAT_ONLY style action.

Usage

## S4 method for signature 'workbook'
setDataFormatForType(object,type,format)

Arguments

object The workbook to use

type The data type for which to set the format.

format A data format string

Details

Based on the (cell) data type the DATA_FORMAT_ONLY style action (see setStyleAction) sets
the data format for the corresponding cells. The data type is normally specified via a corresponding
data type constant from the XLC object. Data formats are specified the standard Excel way. Refer to
the Excel help or to the link below for more information.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setStyleAction

Examples

## Not run:
# Copy existing Excel template to working directory
file.copy(system.file("demoFiles/template2.xlsx",

package = "XLConnect"),
"dataformat.xlsx", overwrite = TRUE)

# Load workbook
wb <- loadWorkbook("dataformat.xlsx")

# Set the data format for numeric columns (cells)
# (keeping the defaults for all other data types)
setDataFormatForType(wb, type = XLC$"DATA_TYPE.NUMERIC",

format = "0.00")

# Set style action to 'data format only'
setStyleAction(wb, XLC$"STYLE_ACTION.DATA_FORMAT_ONLY")

# Write built-in data set 'mtcars' to the named region

https://mirai-solutions.ch


98 setFillBackgroundColor-methods

# 'mtcars' as defined by the Excel template.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("dataformat.xlsx")

## End(Not run)

setFillBackgroundColor-methods

Specifying the fill background color for cell styles

Description

Specifies the fill background color for a cellstyle.

Usage

## S4 method for signature 'cellstyle,numeric'
setFillBackgroundColor(object,color)

Arguments

object The cellstyle to manipulate

color The fill background color to use for the cellstyle. The color is normally
specified via a corresponding color constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setFillBackgroundColor.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a custom anonymous cell style

https://mirai-solutions.ch


setFillForegroundColor-methods 99

cs <- createCellStyle(wb)

# Specify the fill background color for the cell style created above
setFillBackgroundColor(cs, color = XLC$"COLOR.CORNFLOWER_BLUE")

# Specify the fill foreground color
setFillForegroundColor(cs, color = XLC$"COLOR.YELLOW")

# Specify the fill pattern
setFillPattern(cs, fill = XLC$"FILL.BIG_SPOTS")

# Set the cell style created above for the top left cell (A1) in the
# 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

# Save the workbook
saveWorkbook(wb)

# clean up
file.remove("setFillBackgroundColor.xlsx")

## End(Not run)

setFillForegroundColor-methods

Specifying the fill foreground color for cell styles

Description

Specifies the fill foreground color for a cellstyle.

Usage

## S4 method for signature 'cellstyle,numeric'
setFillForegroundColor(object,color)

Arguments

object The cellstyle to manipulate

color The fill foreground color to use for the cellstyle. The color is normally
specified via a corresponding color constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

https://mirai-solutions.ch


100 setFillPattern-methods

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setFillForegroundColor.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a custom anonymous cell style
cs <- createCellStyle(wb)

# Specify the fill background color for the cell style created above
setFillBackgroundColor(cs, color = XLC$"COLOR.CORNFLOWER_BLUE")

# Specify the fill foreground color
setFillForegroundColor(cs, color = XLC$"COLOR.YELLOW")

# Specify the fill pattern
setFillPattern(cs, fill = XLC$"FILL.BIG_SPOTS")

# Set the cell style created above for the top left cell (A1) in the
# 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

# Save the workbook
saveWorkbook(wb)

# clean up
file.remove("setFillForegroundColor.xlsx")

## End(Not run)

setFillPattern-methods

Specifying the fill pattern for cell styles

Description

Specifies the fill pattern for a cellstyle.

Usage

## S4 method for signature 'cellstyle'
setFillPattern(object,fill)

Arguments

object The cellstyle to manipulate
fill The fill pattern to use for the cellstyle. fill is normally specified via a cor-

responding fill constant from the XLC object.



setForceFormulaRecalculation-methods 101

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setFillPattern.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a custom anonymous cell style
cs <- createCellStyle(wb)

# Specify the fill background color for the cell style created above
setFillBackgroundColor(cs, color = XLC$"COLOR.CORNFLOWER_BLUE")

# Specify the fill foreground color
setFillForegroundColor(cs, color = XLC$"COLOR.YELLOW")

# Specify the fill pattern
setFillPattern(cs, fill = XLC$"FILL.BIG_SPOTS")

# Set the cell style created above for the top left cell (A1) in the
# 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

# Save the workbook
saveWorkbook(wb)

# clean up
file.remove("setFillPattern.xlsx")

## End(Not run)

setForceFormulaRecalculation-methods

Forcing Excel to recalculate formula values when opening a workbook

Description

This function controls a flag that forces Excel to recalculate formula values when a workbook is
opened.

https://mirai-solutions.ch


102 setForceFormulaRecalculation-methods

Usage

## S4 method for signature 'workbook,character'
setForceFormulaRecalculation(object,sheet,value)
## S4 method for signature 'workbook,numeric'
setForceFormulaRecalculation(object,sheet,value)

Arguments

object The workbook to use

sheet The name or index of the sheet for which to force formula recalculation. If
sheet = "*", the flag is set for all sheets in the workbook.

value logical specifying if formula recalculation should be forced or not

Details

The arguments sheet and value are vectorized such that multiple worksheets can be controlled
with one method call.

Note

A typical use for this flag is forcing Excel into updating formulas that reference cells affected by
writeWorksheet or writeNamedRegion. The exact behavior of Excel when the flag is set depends
on version and file format.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getForceFormulaRecalculation

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Tell Excel to automatically recalculate formulas on sheet mtcars
setForceFormulaRecalculation(wb, sheet = "mtcars", TRUE)
# The same with a numerical sheet index
setForceFormulaRecalculation(wb, sheet = 1, TRUE)

## End(Not run)

https://mirai-solutions.ch


setHyperlink-methods 103

setHyperlink-methods Setting hyperlinks

Description

Sets hyperlinks for specific cells in a workbook.

Usage

## S4 method for signature 'workbook,missing,character'
setHyperlink(object,formula,sheet,row,col,type,address)
## S4 method for signature 'workbook,missing,numeric'
setHyperlink(object,formula,sheet,row,col,type,address)
## S4 method for signature 'workbook,character,missing'
setHyperlink(object,formula,sheet,row,col,type,address)

Arguments

object The workbook to use

formula A formula specification in the form Sheet!B8:C17. Use either the argument
formula or the combination of sheet, row and col.

sheet Name or index of the sheet the cell is on. Use either the argument formula or
the combination of sheet, row and col.

row Row index of the cell to apply the cellstyle to.

col Column index of the cell to apply the cellstyle to.

type Hyperlink type. See the corresponding "HYPERLINK.*" constants from the
XLC object.

address Hyperlink address. This needs to be a valid URI including scheme. E.g. for
email mailto:myself@me.org, for a URL https://www.somewhere.net or
for a file file:///a/b/c.dat

Details

Sets a hyperlink for the specified cells. Note that cellstyles for hyperlinks can be defined inde-
pendently using setCellStyle. The arguments are vectorized such that multiple hyperlinks can be
set in one method call. Use either the argument formula or the combination of sheet, row and col.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setCellStyle

https://mirai-solutions.ch


104 setMissingValue-methods

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setHyperlink.xlsx", create = TRUE)

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Write built-in data set 'mtcars' to the above defined worksheet
writeWorksheet(wb, mtcars, sheet = "mtcars", rownames = "Car")

# Set hyperlinks
links <- paste0("https://www.google.com?q=", gsub(" ", "+", rownames(mtcars)))
setHyperlink(wb, sheet = "mtcars", row = seq_len(nrow(mtcars)) + 1, col = 1,

type = XLC$HYPERLINK.URL, address = links)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("setHyperlink.xlsx")

## End(Not run)

setMissingValue-methods

Setting missing value identifiers

Description

Defines the set of missing values (character or numeric) used when reading and writing data.

Usage

## S4 method for signature 'workbook,ANY'
setMissingValue(object,value)

Arguments

object The workbook to use

value vector or list of missing value identifiers (either character or numeric) that
are recognized as missing (NA) when reading data. The first element of this
vector will be used as missing value identifier when writing data. If value =
NULL (default), missing values are represented by blank cells and only blank
cells are recognized as missing.



setRowHeight-methods 105

Details

If there are no specific missing value identifiers defined the default behavior is to map missing
values to blank (empty) cells. Otherwise, each string or numeric cell is checked if it matches one
of the defined missing value identifiers. In addition, the first missing value identifier (i.e. the first
element of the value argument) is used to represent missing values when writing data.
Note that the missing value identifiers have to be either character or numeric.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, writeNamedRegion, writeWorksheet

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("missingValue.xlsx", create = TRUE)

# Create a worksheet named 'airquality'
createSheet(wb, name = "airquality")

# Create a named region called 'airquality' on the sheet called
# 'airquality'
createName(wb, name = "airquality", formula = "airquality!$A$1")

# Set the missing value string to 'missing'
setMissingValue(wb, value = "missing")

# Write built-in data set 'airquality' to the above defined named region
writeNamedRegion(wb, airquality, name = "airquality")

# Save workbook
saveWorkbook(wb)

# clean up
file.remove("missingValue.xlsx")

## End(Not run)

setRowHeight-methods Setting the height of a row in a worksheet

Description

Sets the height of a row in a worksheet.

https://mirai-solutions.ch


106 setRowHeight-methods

Usage

## S4 method for signature 'workbook,character'
setRowHeight(object,sheet,row,height)
## S4 method for signature 'workbook,numeric'
setRowHeight(object,sheet,row,height)

Arguments

object The workbook to use

sheet The name or index of the sheet to edit

row The index of the row to resize

height The height in points. If height < 0 (default: -1), the row will be sized to the
sheet’s default row height.

Details

Note that the arguments sheet, row and height are vectorized. As such the row height of multiple
rows (potentially on different worksheets) can be set with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, setColumnWidth

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Sets the row height of the 1st row on sheet 'mtcars'
# to 20 points
setRowHeight(wb, sheet = "mtcars", row = 1, height = 20)

## End(Not run)

https://mirai-solutions.ch


setSheetColor-methods 107

setSheetColor-methods Setting colors on worksheet tabs

Description

Sets a color on a specified worksheet tab. This only works for xlsx files.

Usage

## S4 method for signature 'workbook,character'
setSheetColor(object,sheet,color)
## S4 method for signature 'workbook,numeric'
setSheetColor(object,sheet,color)

Arguments

object The workbook to use

sheet The name or index of the sheet on which to set the tab color

color The color to use for the sheet tab. The color is normally specified via a corre-
sponding color constant from the XLC object.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, XLC

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("sheetcolor.xlsx", create = TRUE)

# Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

# Set the "Sheet1" tab color as red
setSheetColor(wb, "Sheet1", XLC$COLOR.RED)

# Create a worksheet named 'Sheet2'
createSheet(wb, name = "Sheet2")

# Set the tab color of the second workbook sheet as green
setSheetColor(wb, 2, XLC$COLOR.GREEN)

https://mirai-solutions.ch


108 setSheetPos-methods

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("sheetcolor.xlsx")

## End(Not run)

setSheetPos-methods Setting worksheet position

Description

Sets the position of a worksheets in a workbook.

Usage

## S4 method for signature 'workbook,character,numeric'
setSheetPos(object,sheet,pos)

Arguments

object The workbook to use

sheet The name of the worksheet (character) whose position to set. This argument
is vectorized such that the positions of multiple worksheets can be set with one
method call.

pos The position index to set for the corresponding sheet. If missing, sheets will be
positioned in the order they are specified in the argument sheet.

Details

It is important to note that the worksheet positions will be applied one after the other in the order
they have been specified.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getSheetPos, getSheets

https://mirai-solutions.ch


setStyleAction-methods 109

Examples

## Not run:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Move the 'mtcars3' worksheet to the front
setSheetPos(wb, sheet = "mtcars3", pos = 1)

## End(Not run)

setStyleAction-methods

Controlling application of cell styles when writing data to Excel

Description

Controls the application of cellstyles when writing data to Excel.

Usage

## S4 method for signature 'workbook'
setStyleAction(object,type)

Arguments

object The workbook to use

type Defines the style action to be used when writing data (writeNamedRegion,
writeWorksheet) to the specified workbook object

Details

The following style actions are supported:

• XLC$"STYLE_ACTION.XLCONNECT": This is the default. data.frame headers (if specified to
be written) are colored in solid light grey (25 percent). character, numeric and logical vectors
are written using Excel’s "General" data format. Time/date vectors e.g. Date or POSIXt)
are written with the "mm/dd/yyyy hh:mm:ss" data format. All cells are specified to wrap
the text if necessary. The corresponding custom cell styles are called XLConnect.Header,
XLConnect.String, XLConnect.Numeric, XLConnect.Boolean and XLConnect.Date.

• XLC$"STYLE_ACTION.DATATYPE": This style action instructs XLConnect to apply cellstyles
per data type as set by the setCellStyleForType methods. In contrast to the XLC$"STYLE_ACTION.DATA_FORMAT_ONLY"
style action (see below) which only sets a data format to an existing cell style, this action ac-
tually sets a new cellstyle.



110 setStyleAction-methods

• XLC$"STYLE_ACTION.NONE": This style action instructs XLConnect to apply no cell styles
when writing data. Cell styles are kept as they are. This is useful in a scenario where all
styling is predefined in an Excel template which is then only filled with data.

• XLC$"STYLE_ACTION.PREDEFINED": This style action instructs XLConnect to use existing
(predefined) cellstyles when writing headers and columns. This is useful in a template-
based approach where an Excel template with predefined cellstyles for headers and columns
is available. Normally, this would be used when the column dimensions (and potentially
also the row dimensions) of the data tables are known up-front and as such a layout and
corresponding cell styles can be pre-specified.
If a data.frame is written including its header, it is assumed that the Excel file being written
to has predefined cellstyles in the header row. Furthermore, the first row of data is assumed
to contain the cell styles to be replicated for any additional rows. As such, this style action
may only be useful if the same column cell style should be applied across all rows. Please
refer to the available demos for some examples.

• XLC$"STYLE_ACTION.NAME_PREFIX": This style action instructs XLConnect to look for cus-
tom (named) cellstyles with a specified prefix when writing columns and headers. This
style name prefix can be set via the method setStyleNamePrefix.

For column headers, it first checks if there is a cell style named
<STYLE_NAME_PREFIX>.Header.<COLUMN_NAME> .
If there is no such cell style, it checks for a cell style named
<STYLE_NAME_PREFIX>.Header.<COLUMN_INDEX> .
Again, if there is no such cell style, it checks for
<STYLE_NAME_PREFIX>.Header
(no specific column discrimination). As a final resort, it just takes the workbook default cell
style.

For columns, XLConnect first checks the availability of a cell style named
<STYLE_NAME_PREFIX>.Column.<COLUMN_NAME> .
If there is no such cell style, it checks for
<STYLE_NAME_PREFIX>.Column.<COLUMN_INDEX> .
If again there is no such cell style, it checks for
<STYLE_NAME_PREFIX>.Column.<COLUMN_DATA_TYPE>
with <COLUMN_DATA_TYPE> being the corresponding data type from the set: {Numeric,
String, Boolean, DateTime} . As a last resort, it would make use of the workbook’s default
cell style.

• XLC$"STYLE_ACTION.DATA_FORMAT_ONLY": This style action instructs XLConnect to only
set the data format for a cell but not to apply any other styling but rather keep the existing one.
The data format to apply is determined by the data type of the cell (which is in turn determined
by the corresponding R data type). The data format for a specific type can be set via the method
setDataFormatForType. The default data format is "General" for the data types Numeric ,
String and Boolean and is "mm/dd/yyyy hh:mm:ss" for the data type DateTime .

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch


setStyleAction-methods 111

See Also

workbook, cellstyle, createCellStyle, writeNamedRegion, writeWorksheet, setStyleNamePrefix,
setCellStyleForType, setDataFormatForType

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("styleaction.xlsx", create = TRUE)

# Set style action to 'name prefix'
setStyleAction(wb, XLC$"STYLE_ACTION.NAME_PREFIX")
# Set the name prefix to 'MyPersonalStyle'
setStyleNamePrefix(wb, "MyPersonalStyle")

# We now create a named cell style to be used for the header
# (column names) of a data.frame
headerCellStyle <- createCellStyle(wb,

name = "MyPersonalStyle.Header")

# Specify the cell style to use a solid foreground color
setFillPattern(headerCellStyle,

fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(headerCellStyle,

color = XLC$"COLOR.LIGHT_CORNFLOWER_BLUE")

# Specify a thick black bottom border
setBorder(headerCellStyle, side = "bottom",

type = XLC$"BORDER.THICK",
color = XLC$"COLOR.BLACK")

# We now create a named cell style to be used for
# the column named 'wt' (as you will see below, we will
# write the built-in data.frame 'mtcars')
wtColumnCellStyle <- createCellStyle(wb,

name = "MyPersonalStyle.Column.wt")

# Specify the cell style to use a solid foreground color
setFillPattern(wtColumnCellStyle,

fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(wtColumnCellStyle,

color = XLC$"COLOR.LIGHT_ORANGE")

# We now create a named cell style to be used for
# the 3rd column in the data.frame
wtColumnCellStyle <- createCellStyle(wb,

name = "MyPersonalStyle.Column.3")



112 setStyleNamePrefix-methods

# Specify the cell style to use a solid foreground color
setFillPattern(wtColumnCellStyle,

fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(wtColumnCellStyle,

color = XLC$"COLOR.LIME")

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' referring to
# the sheet called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$A$1")

# Write built-in data set 'mtcars' to the above defined named region.
# The style action 'name prefix' will be used when writing the data
# as defined above.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("styleaction.xlsx")

## End(Not run)

setStyleNamePrefix-methods

Setting the style name prefix for the "name prefix" style action

Description

Sets the style name prefix for the "name prefix" style action.

Usage

## S4 method for signature 'workbook'
setStyleNamePrefix(object,prefix)

Arguments

object The workbook to use

prefix The name prefix

Details

Sets the prefix for the "name prefix" style action. See the method setStyleAction for more
information.



setWrapText-methods 113

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setStyleAction, createCellStyle

setWrapText-methods Specifying text wrapping behaviour

Description

Specifies if text should be wrapped in a cell.

Usage

## S4 method for signature 'cellstyle'
setWrapText(object,wrap)

Arguments

object The cellstyle to manipulate

wrap If wrap = TRUE, the text is wrapped if it exceeds the width of the cell - otherwise
not.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, cellstyle, setCellStyle, setStyleAction

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("setWrapText.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a dummy data set with some long text
text <- data.frame(

Text = "Some very very very very very very very long text")

https://mirai-solutions.ch
https://mirai-solutions.ch


114 show-methods

# Write the value to the 'cellstyles' worksheet in the
# top left corner (cell A1)
writeWorksheet(wb, text, sheet = "cellstyles", startRow = 1,

startCol = 1, header = FALSE)

# Create a custom anonymous cell style
cs <- createCellStyle(wb)

# Specify to wrap the text
setWrapText(cs, wrap = TRUE)

# Set the cell style created above for the top left cell (A1)
# in the 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1,

cellstyle = cs)

# Save the workbook
saveWorkbook(wb)

# clean up
file.remove("setWrapText.xlsx")

## End(Not run)

show-methods Display a workbook object

Description

Displays a workbook by printing it. This actually calls the workbook’s print method.

Usage

## S4 method for signature 'workbook'
show(object)

Arguments

object The workbook to display

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, print

https://mirai-solutions.ch


summary-methods 115

Examples

## Not run:
# Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",

package = "XLConnect"))

# Display the wb.mtcars object
wb.mtcars

# Alternatively, show can be called explicitely
show(wb.mtcars)

## End(Not run)

summary-methods Summarizing workbook objects

Description

Outputs a workbook summary including the underlying Excel filename, contained worksheets, hid-
den sheets, very hidden sheets, defined names and the active sheet name.

Usage

## S4 method for signature 'workbook'
summary(object)

Arguments

object The workbook to summarize

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, getSheets, isSheetHidden, isSheetVeryHidden, getDefinedNames, getActiveSheetName

Examples

## Not run:
# Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",

package = "XLConnect"))

# Print a workbook summary
summary(wb.mtcars)

https://mirai-solutions.ch


116 unhideSheet-methods

## End(Not run)

swissfranc Historical Exchange Rates: CHF vs EUR, USD and GBP

Description

This data set provides historical exchange rates (CHF vs EUR, USD, GBP) in the time frame from
January 1, 2014 to February 24, 2015. The exchange rates reflect bid prices with a 0% interbank
rate.

Usage

swissfranc

Format

A data.frame with daily exchange rates in the mentioned time frame.

Source

retrieved via ‘https://www.oanda.com/’ - the retrieved time range is no longer available.

unhideSheet-methods Unhiding worksheets in a workbook

Description

Unhides the specified worksheets in a workbook.

Usage

## S4 method for signature 'workbook,character'
unhideSheet(object,sheet)
## S4 method for signature 'workbook,numeric'
unhideSheet(object,sheet)

Arguments

object The workbook to use

sheet The name or index of the sheet to unhide

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch


unmergeCells-methods 117

See Also

workbook, hideSheet, isSheetHidden, isSheetVeryHidden, isSheetVisible

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("unhideWorksheet.xlsx", create = TRUE)

# Create sheet 'airquality'
createSheet(wb, name = "airquality")

# Write the built-in data set airquality to worksheet
# 'airquality'
writeWorksheet(wb, airquality, sheet = "airquality")

# Create sheet 'CO2'
createSheet(wb, name = "CO2")

# Write the built-in data set CO2 to worksheet 'C02'
writeWorksheet(wb, CO2, sheet = "CO2")

# Hide sheet 'airquality'
hideSheet(wb, sheet = "airquality")

# Unhide sheet 'airquality'
unhideSheet(wb, sheet = "airquality")

# clean up
file.remove("unhideWorksheet.xlsx")

## End(Not run)

unmergeCells-methods Unmerging cells

Description

Unmerges cells in a worksheet.

Usage

## S4 method for signature 'workbook,character'
unmergeCells(object,sheet,reference)
## S4 method for signature 'workbook,numeric'
unmergeCells(object,sheet,reference)



118 with.workbook

Arguments

object The workbook to use

sheet The name or index of the sheet on which to unmerge cells

reference A cell range specification (character) in the form ’A1:B8’. Note that the spec-
ification must exactly correspond to the range of the merged cells.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, mergeCells, idx2cref

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("unmergeCells.xlsx", create = TRUE)

# Create a worksheet called 'merge'
createSheet(wb, name = "merge")

# Merge the cells A1:B8 on the worksheet created above
mergeCells(wb, sheet = "merge", reference = "A1:B8")

# Unmerge the cells A1:B8
unmergeCells(wb, sheet = "merge", reference = "A1:B8")

# clean up
file.remove("unmergeCells.xlsx")

## End(Not run)

with.workbook Evaluate an R expression in a workbook environment

Description

Evaluate an R expression in an environment constructed from the named regions of an Excel work-
book.

Usage

## S3 method for class 'workbook'
with(data, expr, ...)

https://mirai-solutions.ch


with.workbook 119

Arguments

data A workbook object, as returned by loadWorkbook.

expr expression to evaluate

... Additional arguments passed to readNamedRegion

Details

This method will read all named regions from the workbook when creating the environment. Names
in the workbook will be processed through make.names to obtain the variable names.

Changes to the variables representing named regions will not affect the workbook contents and
need to be saved explicitly using writeNamedRegion and saveWorkbook. If the workbook contains
names that do not map to R identifiers,

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

getDefinedNames, readNamedRegion,

Examples

## Not run:
# multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx",

package = "XLConnect")

# load workbook
wb <- loadWorkbook(demoExcelFile)

# named regions: Calendar, IQ, Iris
print(getDefinedNames(wb))

# named regions as variables
with(wb, {

print(Calendar)
summary(IQ)
summary(Iris)

})

## End(Not run)

https://mirai-solutions.ch


120 workbook-class

workbook-class Class "workbook"

Description

This is XLConnect’s main entity representing a Microsoft Excel workbook. S4 objects of this class
and corresponding methods are used to manipulate the underlying Excel workbook instances.

Objects from the Class

Objects can be created by calls of the form loadWorkbook(filename, create). This is a shortcut
form of new("workbook", filename, create) with some additional error checking.

Slots

filename: Object of class character which represents the filename of the underlying Microsoft
Excel workbook.

jobj: Object of class jobjRef (see package rJava) which represents a Java object reference that
is used in the back-end to manipulate the underlying Excel workbook instance.

Note: The jobj slot should not be accessed directly. workbook objects should only be manipulated
via the corresponding methods.

Note

XLConnect supports both Excel 97-2003 (*.xls) and OOXML (Excel 2007+, *.xlsx) file formats.

A workbook’s underlying Excel file is not saved (or being created in case the file did not exist and
create = TRUE has been specified) unless the saveWorkbook method has been called on the object.
This provides more flexibility to the user to decide when changes are saved and also provides better
performance in that several changes can be written in one go (normally at the end, rather than after
every operation causing the file to be rewritten again completely each time). This is due to the fact
that workbooks are manipulated in-memory and are only written to disk with specifically calling
saveWorkbook.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

References

Wikipedia: Office Open XML
https://en.wikipedia.org/wiki/Office_Open_XML

See Also

loadWorkbook, saveWorkbook

https://mirai-solutions.ch
https://en.wikipedia.org/wiki/Office_Open_XML


writeNamedRegion-methods 121

Examples

## Not run:
# Create a new workbook 'myWorkbook.xlsx'
# (assuming the file to not exist already)
wb <- loadWorkbook("myWorkbook.xlsx", create = TRUE)

# Create a worksheet called 'mtcars'
createSheet(wb, name = "mtcars")

# Write built-in dataset 'mtcars' to sheet 'mtcars' created above
writeWorksheet(wb, mtcars, sheet = "mtcars")

# Save workbook - this actually writes the file 'myWorkbook.xlsx' to disk
saveWorkbook(wb)

# clean up
file.remove("myWorkbook.xlsx")

## End(Not run)

writeNamedRegion-methods

Writing named regions to a workbook

Description

Writes data to the named regions defined in a workbook.

Usage

## S4 method for signature 'workbook,ANY'
writeNamedRegion(object, data, name, header,
overwriteFormulaCells, rownames, worksheetScope)

Arguments

object The workbook to use
data Data to write
name Name of the named region to write to
header Specifies if the column names should be written. The default is TRUE.
overwriteFormulaCells

Specifies if existing formula cells in the workbook should be overwritten. The
default is TRUE.

rownames Name (character) of column to use for the row names of the provided data
object. If specified, the row names of the data object (data.frame) will be
included as an additional column with the specified name. If rownames = NULL
(default), no row names will be included. May also be a list in case multiple
data objects are written in one call (see below).



122 writeNamedRegion-methods

worksheetScope Optional character vector with worksheet name(s) to limit the scope in which
the name(s) to write to is/are expected to be found

.

Details

Writes data to the named region specified by name. Note that data is assumed to be a data.frame
and is coerced to one if this is not already the case. The argument header specifies if the column
names should be written. Note also that the arguments are vectorized and as such multiple named
regions can be written with one call. In this case data is assumed to be a list of data objects
(data.frame’s).

Note

Named regions are automatically redefined to the area occupied by the written cells. This guar-
antees that the complete set of data can be re-read using readNamedRegion. Also, this allows the
named region just to be defined as the top left cell to be written to. There is no need to know the
exact size of the data in advance.

When writing data to Excel, writeNamedRegion further applies cell styles to the cells as defined by
the workbook’s "style action" (see setStyleAction).

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

References

What are named regions/ranges?
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/
named_ranges_in_microsoft_excel.htm
How to create named regions/ranges?
https://www.youtube.com/watch?v=iAE9a0uRtpM

See Also

workbook, writeWorksheet, appendNamedRegion, appendWorksheet, readNamedRegion, readWorksheet,
writeNamedRegionToFile

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("writeNamedRegion.xlsx", create = TRUE)

# Create a worksheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' on the sheet called 'mtcars'

https://mirai-solutions.ch
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
https://web.archive.org/web/20240821110221/https://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
https://www.youtube.com/watch?v=iAE9a0uRtpM


writeNamedRegionToFile 123

createName(wb, name = "mtcars", formula = "mtcars!$A$1")

# Write built-in data set 'mtcars' to the above defined named region
# (using header = TRUE)
writeNamedRegion(wb, mtcars, name = "mtcars")

createSheet(wb, name="iris")
setActiveSheet(wb, "iris")

# Do the same with the iris data set, with a worksheet-scoped name
createName(wb, name = "iris", formula = "iris!$A$1", worksheetScope = "iris")
writeNamedRegion(wb, iris, name = "iris", worksheetScope="iris")

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("writeNamedRegion.xlsx")

## End(Not run)

writeNamedRegionToFile

Writing named regions to an Excel file (wrapper function)

Description

Writes named regions to an Excel file.

Usage

writeNamedRegionToFile(file, data, name, formula=NA, ..., worksheetScope = NULL,
styleAction = XLC$STYLE_ACTION.XLCONNECT, clearNamedRegions=FALSE)

Arguments

file The path name of the file to write to

data Data to write

name Name of the named region to write to

formula If formula is specified, each item defines the formula of the named region iden-
tified by the corresponding entry of name. Use this if you want to create the
document from scratch instead of writing to a template!

worksheetScope Optional character vector with worksheet name(s) to limit the scope in which
the name(s) to write to is/are expected to be found. If not specified, the first
matching named region is written to. Use "" to specifically target a globally-
scoped named region.

... Additional arguments passed to writeNamedRegion



124 writeWorksheet-methods

styleAction Style action to be used when writing the data.
The default is XLC$STYLE_ACTION.XLCONNECT. See setStyleAction for more
information.

clearNamedRegions

TRUE to clear content of existing named regions before writing data

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

writeNamedRegion, writeWorksheetToFile, readNamedRegionFromFile,
readWorksheetFromFile

Examples

## Not run:
# multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx",

package = "XLConnect")

template <- "template-ws.xlsx"
file.copy(demoExcelFile, template)

# Write single data.frame to a named region in an existing file
writeNamedRegionToFile(template, name = "Iris", iris)

# Write to a new file, defining the sheet and named region as we write.
# Format according to XLConnect defaults
writeNamedRegionToFile("iris.xlsx", name = "Iris", data = iris,

formula = "IrisData!$C$4",
styleAction = "XLCONNECT")

# clean up
file.remove("iris.xlsx")
file.remove("template-ws.xlsx")

## End(Not run)

writeWorksheet-methods

Writing data to worksheets

Description

Writes data to worksheets of a workbook.

https://mirai-solutions.ch


writeWorksheet-methods 125

Usage

## S4 method for signature 'workbook,ANY,character'
writeWorksheet(object,data,sheet,startRow,startCol,header,overwriteFormulaCells,rownames)
## S4 method for signature 'workbook,ANY,numeric'
writeWorksheet(object,data,sheet,startRow,startCol,header,overwriteFormulaCells,rownames)

Arguments

object The workbook to write to

data Data to write

sheet The name or index of the sheet to write to

startRow Index of the first row to write to. The default is startRow = 1.

startCol Index of the first column to write to. The default is startCol = 1.

header Specifies if the column names should be written. The default is TRUE.
overwriteFormulaCells

Specifies if existing formula cells in the workbook should be overwritten. The
default is TRUE.

rownames Name (character) of column to use for the row names of the provided data
object. If specified, the row names of the data object (data.frame) will be
included as an additional column with the specified name. If rownames = NULL
(default), no row names will be included. May also be a list in case multiple
data objects are written in one call (see below).

Details

Writes data to the worksheet specified by sheet. data is assumed to be a data.frame and is
coerced to one if this is not already the case. startRow and startCol define the top left corner
of the data region to be written. Note that the arguments are vectorized and as such multiple data
objects (data.frame’s) can be written to different worksheets in one call. In this case data is
assumed to be a list of data.frames.

Note

When writing data to Excel, writeWorksheet further applies cell styles to the cells as defined by
the workbook’s "style action" (see setStyleAction).

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook, writeNamedRegion, appendWorksheet, appendNamedRegion, readWorksheet, readNamedRegion,
writeWorksheetToFile

https://mirai-solutions.ch


126 writeWorksheetToFile

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("writeWorksheet.xlsx", create = TRUE)

# Create a worksheet called 'CO2'
createSheet(wb, name = "CO2")

# Write built-in data set 'CO2' to the worksheet created above;
# offset from the top left corner and with default header = TRUE
writeWorksheet(wb, CO2, sheet = "CO2", startRow = 4, startCol = 2)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

# clean up
file.remove("writeWorksheet.xlsx")

## End(Not run)

writeWorksheetToFile Writing data to worksheets in an Excel file (wrapper function)

Description

Writes data to worksheets in an Excel file.

Usage

writeWorksheetToFile(file, data, sheet, ..., styleAction = XLC$STYLE_ACTION.XLCONNECT,
clearSheets = FALSE)

Arguments

file The path name of the file to write to.

data Data to write

sheet The name or index of the sheet to write to

... Additional arguments passed to writeWorksheet

styleAction Style action to be used when writing the data - not vectorized! The default is
XLC$STYLE_ACTION.XLCONNECT. See setStyleAction for more information.

clearSheets TRUE to clear sheets before writing data.

Author(s)

Thomas Themel
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch


XLC 127

See Also

writeWorksheet, writeNamedRegionToFile, readWorksheetFromFile,
readNamedRegionFromFile

Examples

## Not run:
# multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx",

package = "XLConnect")

# create a copy of the template
template <- "template-ws.xlsx"
file.copy(demoExcelFile, template)

# Write single data.frame to a specified location in an existing file
writeWorksheetToFile(template, data=iris, sheet="FirstSheet",

startRow=9, startCol = 9)

# create a copy of the template
template <- "template-multi-ws.xlsx"

# Write a few copies of the data.frame all over a new file
writeWorksheetToFile(template, data = list(i1 = iris, i2 = iris, i3 = iris),

sheet = c("FirstSheet", "SecondSheet", "FirstSheet"),
startRow = c(1,101,201), startCol = c(1,11,21))

# clean up
file.remove("template-multi-ws.xlsx")
file.remove("template-ws.xlsx")

## End(Not run)

XLC XLConnect Constants

Description

List structure defining several constants used across XLConnect.

Format

The format is:

List of 90
$ ERROR.WARN : chr "WARN"
$ ERROR.STOP : chr "STOP"
$ DATA_TYPE.BOOLEAN : chr "BOOLEAN"
$ DATA_TYPE.NUMERIC : chr "NUMERIC"



128 XLC

$ DATA_TYPE.STRING : chr "STRING"
$ DATA_TYPE.DATETIME : chr "DATETIME"
$ STYLE_ACTION.XLCONNECT : chr "XLCONNECT"
$ STYLE_ACTION.NONE : chr "NONE"
$ STYLE_ACTION.PREDEFINED : chr "PREDEFINED"
$ STYLE_ACTION.NAME_PREFIX : chr "STYLE_NAME_PREFIX"
$ STYLE_ACTION.DATA_FORMAT_ONLY: chr "DATA_FORMAT_ONLY"
$ BORDER.DASHED : num 3
$ BORDER.DASH_DOT : num 9
$ BORDER.DASH_DOT_DOT : num 11
$ BORDER.DOTTED : num 7
$ BORDER.DOUBLE : num 6
$ BORDER.HAIR : num 4
$ BORDER.MEDIUM : num 2
$ BORDER.MEDIUM_DASHED : num 8
$ BORDER.MEDIUM_DASH_DOT : num 10
$ BORDER.MEDIUM_DASH_DOT_DOT : num 12
$ BORDER.NONE : num 0
$ BORDER.SLANTED_DASH_DOT : num 13
$ BORDER.THICK : num 5
$ BORDER.THIN : num 1
$ COLOR.BLACK : num 8
$ COLOR.WHITE : num 9
$ COLOR.RED : num 10
$ COLOR.BRIGHT_GREEN : num 11
$ COLOR.BLUE : num 12
$ COLOR.YELLOW : num 13
$ COLOR.PINK : num 14
$ COLOR.TURQUOISE : num 15
$ COLOR.DARK_RED : num 16
$ COLOR.GREEN : num 17
$ COLOR.DARK_BLUE : num 18
$ COLOR.DARK_YELLOW : num 19
$ COLOR.VIOLET : num 20
$ COLOR.TEAL : num 21
$ COLOR.GREY_25_PERCENT : num 22
$ COLOR.GREY_50_PERCENT : num 23
$ COLOR.CORNFLOWER_BLUE : num 24
$ COLOR.MAROON : num 25
$ COLOR.LEMON_CHIFFON : num 26
$ COLOR.ORCHID : num 28
$ COLOR.CORAL : num 29
$ COLOR.ROYAL_BLUE : num 30
$ COLOR.LIGHT_CORNFLOWER_BLUE : num 31
$ COLOR.SKY_BLUE : num 40
$ COLOR.LIGHT_TURQUOISE : num 41
$ COLOR.LIGHT_GREEN : num 42
$ COLOR.LIGHT_YELLOW : num 43



XLC 129

$ COLOR.PALE_BLUE : num 44
$ COLOR.ROSE : num 45
$ COLOR.LAVENDER : num 46
$ COLOR.TAN : num 47
$ COLOR.LIGHT_BLUE : num 48
$ COLOR.AQUA : num 49
$ COLOR.LIME : num 50
$ COLOR.GOLD : num 51
$ COLOR.LIGHT_ORANGE : num 52
$ COLOR.ORANGE : num 53
$ COLOR.BLUE_GREY : num 54
$ COLOR.GREY_40_PERCENT : num 55
$ COLOR.DARK_TEAL : num 56
$ COLOR.SEA_GREEN : num 57
$ COLOR.DARK_GREEN : num 58
$ COLOR.OLIVE_GREEN : num 59
$ COLOR.BROWN : num 60
$ COLOR.PLUM : num 61
$ COLOR.INDIGO : num 62
$ COLOR.GREY_80_PERCENT : num 63
$ COLOR.AUTOMATIC : num 64
$ FILL.NO_FILL : num 0
$ FILL.SOLID_FOREGROUND : num 1
$ FILL.FINE_DOTS : num 2
$ FILL.ALT_BARS : num 3
$ FILL.SPARSE_DOTS : num 4
$ FILL.THICK_HORZ_BANDS : num 5
$ FILL.THICK_VERT_BANDS : num 6
$ FILL.THICK_BACKWARD_DIAG : num 7
$ FILL.THICK_FORWARD_DIAG : num 8
$ FILL.BIG_SPOTS : num 9
$ FILL.BRICKS : num 10
$ FILL.THIN_HORZ_BANDS : num 11
$ FILL.THIN_VERT_BANDS : num 12
$ FILL.THIN_BACKWARD_DIAG : num 13
$ FILL.THIN_FORWARD_DIAG : num 14
$ FILL.SQUARES : num 15
$ FILL.DIAMONDS : num 16

Details

The XLC list structure defines several constants used throughout XLConnect. The general conven-
tion for enumeration types is to address corresponding constants via XLC$"<ENUM_TYPE>.<VALUE>"
where <ENUM_TYPE> specifies the name of the enumeration and <VALUE> specifies a corre-
sponding enumeration value. An example is XLC$"COLOR.RED" where "COLOR" is the enumera-
tion type and "RED" is the corresponding color enumeration value.



130 xlcDump

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

xlcDump Dumping data sets to Excel files

Description

Dumps data sets to Excel files by writing each object to a separate worksheet.

Usage

xlcDump(list, ..., file = "dump.xlsx", pos = -1, overwrite = FALSE)

Arguments

list character vector of names of objects inside environment pos to dump into
an Excel file. Objects will be written using writeWorksheet - as such any
object will be coerced to a data.frame. If missing, the list of objects will be
determined via the function ls which takes any arguments specified via . . . .

... Arguments that will be passed to the ls function for getting a list of object names
in case the list argument is missing.

file Excel file to which objects will be dumped. Can be an existing or a new file.
Defaults to "dump.xlsx".

pos Environment in which to look for objects. Can be specified either as an integer
specifying the position in the search list, as a character naming an element in
the search list or as an environment. Defaults to -1 which refers to the current
environment.

overwrite logical specifying if data should be overwritten if objects with the same name
have already been dumped to the Excel file.

Details

Each object is written to a separate worksheet named by the name of the object. Objects are written
using the writeWorksheet method - as such any object will be coerced to data.frame.

Value

Named logical vector specifying if objects have been dumped or not. An object may not be
dumped because there was an issue with the coercion to a data.frame or the object already existed
(and overwrite = FALSE) in the workbook.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch
https://mirai-solutions.ch


xlcEdit 131

See Also

xlcRestore, writeNamedRegion, writeWorksheet, writeNamedRegionToFile, writeWorksheetToFile,
xlcEdit

Examples

## Not run:
require(datasets)
xlcDump(c("airquality", "CO2", "iris", "PlantGrowth", "swiss"),

file = "myDump.xlsx", pos = "package:datasets")
xlcRestore(file = "myDump.xlsx", overwrite = TRUE)
# clean up
file.remove("myDump.xlsx")

## End(Not run)

xlcEdit Editing data sets in an Excel file editor

Description

Provides the capability to edit an object/data.frame in an Excel file editor. After editing, the object
is restored in the R session with the corresponding changes.

Usage

xlcEdit(obj, pos = globalenv(), ext = ".xlsx")

Arguments

obj Object (data.frame) to edit.

pos Where to look for the object specified by obj. See pos argument of get for
more information.

ext Extension to use for the Excel file being created. Defaults to ".xlsx".

Details

This function uses xlcDump and xlcRestore to dump objects to and restore objects from Excel
files. An OS command is invoked to open the temporary Excel file in the default editor. Changes to
the file have to be saved in order for them to take effect in the restored object.

Value

Invisibly returns the value of the xlcRestore operation.



132 xlcFreeMemory

Note

This function only works under Windows and MacOS with a corresponding Excel file editor, e.g.
MS Excel or LibreOffice. Attempts to use this function under another OS will result in an error
being thrown.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

xlcDump, xlcRestore, writeNamedRegion, writeWorksheet, writeNamedRegionToFile, writeWorksheetToFile

Examples

## Not run:
myObj = mtcars
xlcEdit(myObj)

## End(Not run)

xlcFreeMemory Freeing Java Virtual Machine memory

Description

Frees Java Virtual Machine (JVM) memory.

Usage

xlcFreeMemory(...)

Arguments

... Further arguments to be passed to R’s garbage collector (gc).

Details

This function uses Java’s Runtime class to run the garbage collector.
Java memory is freed by first running R’s garbage collector (gc) and then Java’s garbage collector.
This sequence is important as R’s gc may release objects which in turn allows Java’s garbage col-
lector to release some objects.

Note, in general there should be no need to make active use of this with XLConnect. Both R
and Java automatically perform garbage collection at times. However, this function might be useful
to reclaim memory after removing a large data object that has been written/read to/from Excel.

https://mirai-solutions.ch


xlcMemoryReport 133

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

xlcMemoryReport, gc

Examples

## Not run:
xlcFreeMemory()

## End(Not run)

xlcMemoryReport Reporting free Java Virtual Machine memory

Description

Reports the amount of free memory in the Java Virtual Machine (JVM).

Usage

xlcMemoryReport()

Details

This function uses Java’s Runtime class to query the free JVM memory.

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

xlcFreeMemory

Examples

## Not run:
xlcMemoryReport()

## End(Not run)

https://mirai-solutions.ch
https://mirai-solutions.ch


134 xlcRestore

XLConnect-deprecated Deprecated functions in package XLConnect

Description

These functions are provided for compatibility with older versions of XLConnect only, and will be
defunct in a later release.

Details

The following functions are deprecated and will be made defunct. Use the replacements as indi-
cated.

• getReferenceCoordinates: getReferenceCoordinatesForName

xlcRestore Restoring objects from Excel files

Description

Restores objects from Excel files that have been dumped using xlcDump.

Usage

xlcRestore(file = "dump.xlsx", pos = -1, overwrite = FALSE)

Arguments

file Excel file from which to restore objects. This is normally a file that has been
produced with xlcDump. Defaults to "dump.xlsx".

pos Environment into which to restore objects. Can be specified either as an integer
specifying the position in the search list, as a character naming an element in
the search list or as an environment. Defaults to -1 which refers to the current
environment.

overwrite logical specifying if data objects should be overwritten if they already exist
inside the environment pos.

Value

Named logical vector specifying if objects have been restored or not. An object may not be
restored because there was an issue with reading the data from the worksheet or the object already
existed in the environment pos (and overwrite = FALSE).

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

https://mirai-solutions.ch


$-methods 135

See Also

xlcDump, readNamedRegion, readWorksheet, readNamedRegionFromFile,
readWorksheetFromFile, xlcEdit

Examples

## Not run:
require(datasets)
xlcDump(c("airquality", "CO2", "iris", "PlantGrowth", "swiss"),

file = "myDump.xlsx", pos = "package:datasets")
xlcRestore(file = "myDump.xlsx", overwrite = TRUE)
# clean up
file.remove("myDump.xlsx")

## End(Not run)

$-methods Executing workbook methods in object$method(...) form

Description

Allows to execute workbook methods in workbook-object$method(...) form.

Arguments

x The object (workbook, cellstyle) to use

Details

x$method(...) (where x is a workbook-object) is equivalent to method(x, ...)

Note

The workbook $-operator allows to call workbook-methods in workbook-object$method(...)
form. This form might be considered more convenient or readable for programmers coming from
other object-oriented languages such as Java, C#, ...

Author(s)

Martin Studer
Mirai Solutions GmbH https://mirai-solutions.ch

See Also

workbook

https://mirai-solutions.ch


136 $-methods

Examples

## Not run:
# Load workbook (create if not existing)
wb <- loadWorkbook("dollar.xlsx", create = TRUE)

# Create a worksheet called 'CO2'
wb$createSheet(name = "CO2")

# Write built-in data set 'CO2' to the worksheet created above
wb$writeWorksheet(CO2, sheet = "CO2", startRow = 4, startCol = 2)

# Save workbook
wb$saveWorkbook()

# clean up
file.remove("dollar.xlsx")

## End(Not run)



Index

∗ IO
appendNamedRegion-methods, 6
appendWorksheet-methods, 8
readNamedRegion, 65
readNamedRegionFromFile, 69
readTable, 71
readWorksheet-methods, 73
readWorksheetFromFile, 78
with.workbook, 118
writeNamedRegion-methods, 121
writeNamedRegionToFile, 123
writeWorksheet-methods, 124
writeWorksheetToFile, 126

∗ classes
cellstyle-class, 11
workbook-class, 120

∗ datasets
mirai, 63
swissfranc, 116
XLC, 127

∗ error
onErrorCell-methods, 63

∗ file
loadWorkbook, 60
saveWorkbook-methods, 84
xlcDump, 130
xlcRestore, 134

∗ list
XLC, 127

∗ methods
$-methods, 135
addImage-methods, 5
appendNamedRegion-methods, 6
appendWorksheet-methods, 8
clearNamedRegion-methods, 13
clearRange-methods, 14
clearRangeFromReference-methods,

15
clearSheet-methods, 16

cloneSheet-methods, 17
createCellStyle-methods, 19
createFreezePane-methods, 21
createName-methods, 23
createSheet-methods, 24
createSplitPane-methods, 25
existsCellStyle-methods, 28
existsName-methods, 29
existsSheet-methods, 30
extraction-methods, 31
getActiveSheetIndex-methods, 33
getActiveSheetName-methods, 34
getBoundingBox-methods, 35
getCellFormula-methods, 37
getCellStyle-methods, 38
getCellStyleForType-methods, 39
getDefinedNames-methods, 40
getForceFormulaRecalculation-methods,

41
getLastColumn-methods, 42
getLastRow-methods, 43
getOrCreateCellStyle-methods, 44
getReferenceCoordinates-methods,

45
getReferenceCoordinatesForName-methods,

46
getReferenceCoordinatesForTable-methods,

47
getReferenceFormula-methods, 48
getSheetPos-methods, 49
getSheets-methods, 50
getTables-methods, 51
hideSheet-methods, 52
isSheetHidden-methods, 56
isSheetVeryHidden-methods, 58
isSheetVisible-methods, 59
mergeCells-methods, 62
print-methods, 64
readNamedRegion, 65

137



138 INDEX

readTable, 71
readWorksheet-methods, 73
removeName-methods, 80
removePane-methods, 81
removeSheet-methods, 82
renameSheet-methods, 83
saveWorkbook-methods, 84
setActiveSheet-methods, 86
setAutoFilter-methods, 87
setBorder-methods, 88
setCellFormula-methods, 89
setCellStyle-methods, 91
setCellStyleForType-methods, 93
setColumnWidth-methods, 94
setDataFormat-methods, 95
setDataFormatForType-methods, 96
setFillBackgroundColor-methods, 98
setFillForegroundColor-methods, 99
setFillPattern-methods, 100
setForceFormulaRecalculation-methods,

101
setHyperlink-methods, 103
setMissingValue-methods, 104
setRowHeight-methods, 105
setSheetColor-methods, 107
setSheetPos-methods, 108
setStyleAction-methods, 109
setStyleNamePrefix-methods, 112
setWrapText-methods, 113
show-methods, 114
summary-methods, 115
unhideSheet-methods, 116
unmergeCells-methods, 117
writeNamedRegion-methods, 121
writeWorksheet-methods, 124

∗ misc
xlcEdit, 131

∗ package
XLConnect-package, 4

∗ print
print-methods, 64
show-methods, 114
summary-methods, 115

∗ utilities
$-methods, 135
addImage-methods, 5
aref, 9
aref2idx, 10

cellstyle-class, 11
clearNamedRegion-methods, 13
clearRange-methods, 14
clearRangeFromReference-methods,

15
clearSheet-methods, 16
cloneSheet-methods, 17
col2idx, 19
createCellStyle-methods, 19
createFreezePane-methods, 21
createName-methods, 23
createSheet-methods, 24
createSplitPane-methods, 25
cref2idx, 27
existsCellStyle-methods, 28
existsName-methods, 29
existsSheet-methods, 30
extraction-methods, 31
extractSheetName, 33
getActiveSheetIndex-methods, 33
getActiveSheetName-methods, 34
getBoundingBox-methods, 35
getCellFormula-methods, 37
getCellStyle-methods, 38
getCellStyleForType-methods, 39
getDefinedNames-methods, 40
getForceFormulaRecalculation-methods,

41
getLastColumn-methods, 42
getLastRow-methods, 43
getOrCreateCellStyle-methods, 44
getReferenceCoordinates-methods,

45
getReferenceCoordinatesForName-methods,

46
getReferenceCoordinatesForTable-methods,

47
getReferenceFormula-methods, 48
getSheetPos-methods, 49
getSheets-methods, 50
getTables-methods, 51
hideSheet-methods, 52
idx2aref, 54
idx2col, 55
idx2cref, 55
isSheetHidden-methods, 56
isSheetVeryHidden-methods, 58
isSheetVisible-methods, 59



INDEX 139

mergeCells-methods, 62
onErrorCell-methods, 63
removeName-methods, 80
removePane-methods, 81
removeSheet-methods, 82
renameSheet-methods, 83
setActiveSheet-methods, 86
setAutoFilter-methods, 87
setBorder-methods, 88
setCellFormula-methods, 89
setCellStyle-methods, 91
setCellStyleForType-methods, 93
setColumnWidth-methods, 94
setDataFormat-methods, 95
setDataFormatForType-methods, 96
setFillBackgroundColor-methods, 98
setFillForegroundColor-methods, 99
setFillPattern-methods, 100
setForceFormulaRecalculation-methods,

101
setHyperlink-methods, 103
setMissingValue-methods, 104
setRowHeight-methods, 105
setSheetColor-methods, 107
setSheetPos-methods, 108
setStyleAction-methods, 109
setStyleNamePrefix-methods, 112
setWrapText-methods, 113
summary-methods, 115
unhideSheet-methods, 116
unmergeCells-methods, 117
XLC, 127
xlcDump, 130
xlcEdit, 131
xlcFreeMemory, 132
xlcMemoryReport, 133
xlcRestore, 134

[ (extraction-methods), 31
[,workbook-method (extraction-methods),

31
[-methods (extraction-methods), 31
[<- (extraction-methods), 31
[<-,workbook-method

(extraction-methods), 31
[<--methods (extraction-methods), 31
[[ (extraction-methods), 31
[[,workbook-method

(extraction-methods), 31

[[-methods (extraction-methods), 31
[[<- (extraction-methods), 31
[[<-,workbook-method

(extraction-methods), 31
[[<--methods (extraction-methods), 31
$ ($-methods), 135
$,cellstyle-method ($-methods), 135
$,workbook-method ($-methods), 135
$-methods, 135

addImage (addImage-methods), 5
addImage,workbook-method

(addImage-methods), 5
addImage-methods, 5
appendNamedRegion, 8, 122, 125
appendNamedRegion

(appendNamedRegion-methods), 6
appendNamedRegion,workbook,ANY-method

(appendNamedRegion-methods), 6
appendNamedRegion,workbook-method

(appendNamedRegion-methods), 6
appendNamedRegion-methods, 6
appendWorksheet, 7, 122, 125
appendWorksheet

(appendWorksheet-methods), 8
appendWorksheet,workbook,ANY,character-method

(appendWorksheet-methods), 8
appendWorksheet,workbook,ANY,numeric-method

(appendWorksheet-methods), 8
appendWorksheet-methods, 8
aref, 9, 10, 19, 27, 54–56
aref2idx, 9, 10, 14, 19, 27, 54–56

cellstyle, 19, 20, 28, 38, 39, 45, 88, 91, 93,
95, 96, 98–101, 103, 109–111, 113,
135

cellstyle-class, 11
clearNamedRegion, 15–17
clearNamedRegion

(clearNamedRegion-methods), 13
clearNamedRegion,workbook,character-method

(clearNamedRegion-methods), 13
clearNamedRegion-methods, 12
clearRange, 13, 16, 17
clearRange (clearRange-methods), 14
clearRange,workbook,character-method

(clearRange-methods), 14
clearRange,workbook,numeric-method

(clearRange-methods), 14



140 INDEX

clearRange-methods, 14
clearRangeFromReference, 13, 15, 17
clearRangeFromReference

(clearRangeFromReference-methods),
15

clearRangeFromReference,workbook,character-method
(clearRangeFromReference-methods),
15

clearRangeFromReference-methods, 15
clearSheet, 13, 15, 16
clearSheet (clearSheet-methods), 16
clearSheet,workbook,character-method

(clearSheet-methods), 16
clearSheet,workbook,numeric-method

(clearSheet-methods), 16
clearSheet-methods, 16
cloneSheet, 25, 30, 83, 84
cloneSheet (cloneSheet-methods), 17
cloneSheet,workbook,character-method

(cloneSheet-methods), 17
cloneSheet,workbook,numeric-method

(cloneSheet-methods), 17
cloneSheet-methods, 17
col2idx, 9, 10, 19, 27, 54–56
createCellStyle, 11, 28, 38, 45, 91, 111, 113
createCellStyle

(createCellStyle-methods), 19
createCellStyle,workbook,character-method

(createCellStyle-methods), 19
createCellStyle,workbook,missing-method

(createCellStyle-methods), 19
createCellStyle-methods, 19
createFreezePane, 26, 81
createFreezePane

(createFreezePane-methods), 21
createFreezePane,workbook,character-method

(createFreezePane-methods), 21
createFreezePane,workbook,numeric-method

(createFreezePane-methods), 21
createFreezePane-methods, 21
createName, 5, 29, 41, 46–49, 80
createName (createName-methods), 23
createName,workbook-method

(createName-methods), 23
createName-methods, 23
createSheet, 18, 30, 51, 83, 84, 86
createSheet (createSheet-methods), 24
createSheet,workbook-method

(createSheet-methods), 24
createSheet-methods, 24
createSplitPane, 22, 81
createSplitPane

(createSplitPane-methods), 25
createSplitPane,workbook,character-method

(createSplitPane-methods), 25
createSplitPane,workbook,numeric-method

(createSplitPane-methods), 25
createSplitPane-methods, 25
cref2idx, 10, 19, 27, 54–56

data.frame, 66, 72, 75

existsCellStyle, 20, 38, 45
existsCellStyle

(existsCellStyle-methods), 28
existsCellStyle,workbook-method

(existsCellStyle-methods), 28
existsCellStyle-methods, 28
existsName, 24, 41, 46–49, 80
existsName (existsName-methods), 29
existsName,workbook-method

(existsName-methods), 29
existsName-methods, 29
existsSheet, 18, 25, 83, 84, 86
existsSheet (existsSheet-methods), 30
existsSheet,workbook-method

(existsSheet-methods), 30
existsSheet-methods, 30
extraction-methods, 31
extractSheetName, 33

gc, 132, 133
get, 131
getActiveSheetIndex, 35
getActiveSheetIndex

(getActiveSheetIndex-methods),
33

getActiveSheetIndex,workbook-method
(getActiveSheetIndex-methods),
33

getActiveSheetIndex-methods, 33
getActiveSheetName, 34, 115
getActiveSheetName

(getActiveSheetName-methods),
34

getActiveSheetName,workbook-method
(getActiveSheetName-methods),
34



INDEX 141

getActiveSheetName-methods, 34
getBoundingBox

(getBoundingBox-methods), 35
getBoundingBox,workbook,character-method

(getBoundingBox-methods), 35
getBoundingBox,workbook,numeric-method

(getBoundingBox-methods), 35
getBoundingBox-methods, 35
getCellFormula, 90
getCellFormula

(getCellFormula-methods), 37
getCellFormula,workbook,character-method

(getCellFormula-methods), 37
getCellFormula,workbook,numeric-method

(getCellFormula-methods), 37
getCellFormula-methods, 37
getCellStyle (getCellStyle-methods), 38
getCellStyle,workbook-method

(getCellStyle-methods), 38
getCellStyle-methods, 38
getCellStyleForType, 93
getCellStyleForType

(getCellStyleForType-methods),
39

getCellStyleForType,workbook-method
(getCellStyleForType-methods),
39

getCellStyleForType-methods, 39
getDefinedNames, 24, 29, 80, 115, 119
getDefinedNames

(getDefinedNames-methods), 40
getDefinedNames,workbook-method

(getDefinedNames-methods), 40
getDefinedNames-methods, 40
getForceFormulaRecalculation, 102
getForceFormulaRecalculation

(getForceFormulaRecalculation-methods),
41

getForceFormulaRecalculation,workbook,character-method
(getForceFormulaRecalculation-methods),
41

getForceFormulaRecalculation,workbook,numeric-method
(getForceFormulaRecalculation-methods),
41

getForceFormulaRecalculation-methods,
41

getLastColumn (getLastColumn-methods),
42

getLastColumn,workbook,character-method
(getLastColumn-methods), 42

getLastColumn,workbook,numeric-method
(getLastColumn-methods), 42

getLastColumn-methods, 42
getLastRow (getLastRow-methods), 43
getLastRow,workbook,character-method

(getLastRow-methods), 43
getLastRow,workbook,numeric-method

(getLastRow-methods), 43
getLastRow-methods, 43
getOrCreateCellStyle, 20, 28, 38
getOrCreateCellStyle

(getOrCreateCellStyle-methods),
44

getOrCreateCellStyle,workbook,character-method
(getOrCreateCellStyle-methods),
44

getOrCreateCellStyle-methods, 44
getReferenceCoordinates

(getReferenceCoordinates-methods),
45

getReferenceCoordinates,workbook-method
(getReferenceCoordinates-methods),
45

getReferenceCoordinates-methods, 45
getReferenceCoordinatesForName, 46, 48,

134
getReferenceCoordinatesForName

(getReferenceCoordinatesForName-methods),
46

getReferenceCoordinatesForName,workbook-method
(getReferenceCoordinatesForName-methods),
46

getReferenceCoordinatesForName-methods,
46

getReferenceCoordinatesForTable, 47
getReferenceCoordinatesForTable

(getReferenceCoordinatesForTable-methods),
47

getReferenceCoordinatesForTable,workbook,character-method
(getReferenceCoordinatesForTable-methods),
47

getReferenceCoordinatesForTable,workbook,numeric-method
(getReferenceCoordinatesForTable-methods),
47

getReferenceCoordinatesForTable-methods,
47



142 INDEX

getReferenceFormula, 46–48
getReferenceFormula

(getReferenceFormula-methods),
48

getReferenceFormula,workbook-method
(getReferenceFormula-methods),
48

getReferenceFormula-methods, 48
getSheetPos, 51, 108
getSheetPos (getSheetPos-methods), 49
getSheetPos,workbook,character-method

(getSheetPos-methods), 49
getSheetPos-methods, 49
getSheets, 18, 25, 30, 42, 50, 52, 83, 84, 86,

108, 115
getSheets (getSheets-methods), 50
getSheets,workbook-method

(getSheets-methods), 50
getSheets-methods, 50
getTables (getTables-methods), 51
getTables,workbook,character-method

(getTables-methods), 51
getTables,workbook,numeric-method

(getTables-methods), 51
getTables-methods, 51

hideSheet, 57, 58, 60, 117
hideSheet (hideSheet-methods), 52
hideSheet,workbook,character-method

(hideSheet-methods), 52
hideSheet,workbook,numeric-method

(hideSheet-methods), 52
hideSheet-methods, 52

idx2aref, 9, 10, 19, 27, 54, 55, 56
idx2col, 9, 10, 19, 27, 54, 55, 56
idx2cref, 9, 10, 19, 27, 54, 55, 55, 62, 118
isSheetHidden, 53, 58, 60, 115, 117
isSheetHidden (isSheetHidden-methods),

56
isSheetHidden,workbook,character-method

(isSheetHidden-methods), 56
isSheetHidden,workbook,numeric-method

(isSheetHidden-methods), 56
isSheetHidden-methods, 56
isSheetVeryHidden, 53, 57, 60, 115, 117
isSheetVeryHidden

(isSheetVeryHidden-methods), 58

isSheetVeryHidden,workbook,character-method
(isSheetVeryHidden-methods), 58

isSheetVeryHidden,workbook,numeric-method
(isSheetVeryHidden-methods), 58

isSheetVeryHidden-methods, 58
isSheetVisible, 53, 57, 58, 117
isSheetVisible

(isSheetVisible-methods), 59
isSheetVisible,workbook,character-method

(isSheetVisible-methods), 59
isSheetVisible,workbook,numeric-method

(isSheetVisible-methods), 59
isSheetVisible-methods, 59

loadWorkbook, 60, 84, 85, 119, 120

make.names, 119
mergeCells, 118
mergeCells (mergeCells-methods), 62
mergeCells,workbook,character-method

(mergeCells-methods), 62
mergeCells,workbook,numeric-method

(mergeCells-methods), 62
mergeCells-methods, 62
mirai, 63

onErrorCell, 68, 70, 73, 77, 79
onErrorCell (onErrorCell-methods), 63
onErrorCell,workbook-method

(onErrorCell-methods), 63
onErrorCell-methods, 63

print, 114
print (print-methods), 64
print,workbook-method (print-methods),

64
print-methods, 64

readNamedRegion, 7, 8, 24, 29, 31, 41, 64, 65,
70, 73, 77, 80, 119, 122, 125, 135

readNamedRegion,workbook-method
(readNamedRegion), 65

readNamedRegion-methods
(readNamedRegion), 65

readNamedRegionFromFile, 64, 68, 69, 73,
79, 124, 127, 135

readTable, 52, 68, 71, 77
readTable,workbook,character-method

(readTable), 71



INDEX 143

readTable,workbook,numeric-method
(readTable), 71

readTable-methods (readTable), 71
readWorksheet, 7, 8, 31, 64, 68, 73, 79, 122,

125, 135
readWorksheet (readWorksheet-methods),

73
readWorksheet,workbook,character-method

(readWorksheet-methods), 73
readWorksheet,workbook,numeric-method

(readWorksheet-methods), 73
readWorksheet-methods, 73
readWorksheetFromFile, 64, 70, 77, 78, 124,

127, 135
removeName, 24, 29, 41, 46–49
removeName (removeName-methods), 80
removeName,workbook-method

(removeName-methods), 80
removeName-methods, 80
removePane, 22, 26
removePane (removePane-methods), 81
removePane,workbook,character-method

(removePane-methods), 81
removePane,workbook,numeric-method

(removePane-methods), 81
removePane-methods, 81
removeSheet, 18, 25, 30, 51, 84, 86
removeSheet (removeSheet-methods), 82
removeSheet,workbook,character-method

(removeSheet-methods), 82
removeSheet,workbook,numeric-method

(removeSheet-methods), 82
removeSheet-methods, 82
renameSheet, 18, 25, 30, 51, 83, 86
renameSheet (renameSheet-methods), 83
renameSheet,workbook,character-method

(renameSheet-methods), 83
renameSheet,workbook,numeric-method

(renameSheet-methods), 83
renameSheet-methods, 83

saveWorkbook, 61, 119, 120
saveWorkbook (saveWorkbook-methods), 84
saveWorkbook,workbook,character-method

(saveWorkbook-methods), 84
saveWorkbook,workbook,missing-method

(saveWorkbook-methods), 84
saveWorkbook-methods, 84
setActiveSheet, 83, 84

setActiveSheet
(setActiveSheet-methods), 86

setActiveSheet,workbook,character-method
(setActiveSheet-methods), 86

setActiveSheet,workbook,numeric-method
(setActiveSheet-methods), 86

setActiveSheet-methods, 86
setAutoFilter (setAutoFilter-methods),

87
setAutoFilter,workbook,character-method

(setAutoFilter-methods), 87
setAutoFilter,workbook,numeric-method

(setAutoFilter-methods), 87
setAutoFilter-methods, 87
setBorder, 20, 38, 91
setBorder (setBorder-methods), 88
setBorder,cellstyle-method

(setBorder-methods), 88
setBorder-methods, 88
setCellFormula, 37
setCellFormula

(setCellFormula-methods), 89
setCellFormula,workbook,character-method

(setCellFormula-methods), 89
setCellFormula,workbook,numeric-method

(setCellFormula-methods), 89
setCellFormula-methods, 89
setCellStyle, 11, 20, 28, 38, 45, 88, 96, 98,

99, 101, 103, 113
setCellStyle (setCellStyle-methods), 91
setCellStyle,workbook,character,missing-method

(setCellStyle-methods), 91
setCellStyle,workbook,missing,character-method

(setCellStyle-methods), 91
setCellStyle,workbook,missing,numeric-method

(setCellStyle-methods), 91
setCellStyle-methods, 91
setCellStyleForType, 39, 109, 111
setCellStyleForType

(setCellStyleForType-methods),
93

setCellStyleForType,workbook-method
(setCellStyleForType-methods),
93

setCellStyleForType-methods, 93
setColumnWidth, 106
setColumnWidth

(setColumnWidth-methods), 94



144 INDEX

setColumnWidth,workbook,character-method
(setColumnWidth-methods), 94

setColumnWidth,workbook,numeric-method
(setColumnWidth-methods), 94

setColumnWidth-methods, 94
setDataFormat, 20, 38, 91
setDataFormat (setDataFormat-methods),

95
setDataFormat,cellstyle-method

(setDataFormat-methods), 95
setDataFormat-methods, 95
setDataFormatForType, 110, 111
setDataFormatForType

(setDataFormatForType-methods),
96

setDataFormatForType,workbook-method
(setDataFormatForType-methods),
96

setDataFormatForType-methods, 96
setFillBackgroundColor, 20, 38, 91
setFillBackgroundColor

(setFillBackgroundColor-methods),
98

setFillBackgroundColor,cellstyle,numeric-method
(setFillBackgroundColor-methods),
98

setFillBackgroundColor-methods, 98
setFillForegroundColor, 20, 38, 91
setFillForegroundColor

(setFillForegroundColor-methods),
99

setFillForegroundColor,cellstyle,numeric-method
(setFillForegroundColor-methods),
99

setFillForegroundColor-methods, 99
setFillPattern, 20, 38, 91
setFillPattern

(setFillPattern-methods), 100
setFillPattern,cellstyle-method

(setFillPattern-methods), 100
setFillPattern-methods, 100
setForceFormulaRecalculation, 42
setForceFormulaRecalculation

(setForceFormulaRecalculation-methods),
101

setForceFormulaRecalculation,workbook,character-method
(setForceFormulaRecalculation-methods),
101

setForceFormulaRecalculation,workbook,numeric-method
(setForceFormulaRecalculation-methods),
101

setForceFormulaRecalculation-methods,
101

setHyperlink (setHyperlink-methods), 103
setHyperlink,workbook,character,missing-method

(setHyperlink-methods), 103
setHyperlink,workbook,missing,character-method

(setHyperlink-methods), 103
setHyperlink,workbook,missing,numeric-method

(setHyperlink-methods), 103
setHyperlink-methods, 103
setMissingValue, 67, 72, 76
setMissingValue

(setMissingValue-methods), 104
setMissingValue,workbook,ANY-method

(setMissingValue-methods), 104
setMissingValue,workbook-method

(setMissingValue-methods), 104
setMissingValue-methods, 104
setRowHeight, 95
setRowHeight (setRowHeight-methods), 105
setRowHeight,workbook,character-method

(setRowHeight-methods), 105
setRowHeight,workbook,numeric-method

(setRowHeight-methods), 105
setRowHeight-methods, 105
setSheetColor (setSheetColor-methods),

107
setSheetColor,workbook,character-method

(setSheetColor-methods), 107
setSheetColor,workbook,numeric-method

(setSheetColor-methods), 107
setSheetColor-methods, 107
setSheetPos, 50, 51
setSheetPos (setSheetPos-methods), 108
setSheetPos,workbook,character,missing-method

(setSheetPos-methods), 108
setSheetPos,workbook,character,numeric-method

(setSheetPos-methods), 108
setSheetPos-methods, 108
setStyleAction, 11, 20, 38, 39, 88, 93,

96–99, 101, 112, 113, 122, 124–126
setStyleAction

(setStyleAction-methods), 109
setStyleAction,workbook-method

(setStyleAction-methods), 109



INDEX 145

setStyleAction-methods, 109
setStyleNamePrefix, 20, 38, 110, 111
setStyleNamePrefix

(setStyleNamePrefix-methods),
112

setStyleNamePrefix,workbook-method
(setStyleNamePrefix-methods),
112

setStyleNamePrefix-methods, 112
setWrapText, 20, 38, 91
setWrapText (setWrapText-methods), 113
setWrapText,cellstyle-method

(setWrapText-methods), 113
setWrapText-methods, 113
show (show-methods), 114
show,workbook-method (show-methods), 114
show-methods, 114
strptime, 66, 72, 75
summary (summary-methods), 115
summary,workbook-method

(summary-methods), 115
summary-methods, 115
swissfranc, 116

unhideSheet, 53, 57, 58, 60
unhideSheet (unhideSheet-methods), 116
unhideSheet,workbook,character-method

(unhideSheet-methods), 116
unhideSheet,workbook,numeric-method

(unhideSheet-methods), 116
unhideSheet-methods, 116
unmergeCells, 62
unmergeCells (unmergeCells-methods), 117
unmergeCells,workbook,character-method

(unmergeCells-methods), 117
unmergeCells,workbook,numeric-method

(unmergeCells-methods), 117
unmergeCells-methods, 117

with.workbook, 118
workbook, 5, 7, 8, 11, 13–18, 20, 22–26,

28–31, 33–53, 56–66, 68, 70, 71, 73,
74, 77, 80–91, 93–99, 101–109,
111–118, 121, 122, 124, 125, 135

workbook-class, 120
writeNamedRegion, 7, 8, 24, 29, 31, 41, 68,

73, 77, 80, 102, 105, 109, 111, 119,
123–125, 131, 132

writeNamedRegion
(writeNamedRegion-methods), 121

writeNamedRegion,workbook,ANY-method
(writeNamedRegion-methods), 121

writeNamedRegion,workbook-method
(writeNamedRegion-methods), 121

writeNamedRegion-methods, 121
writeNamedRegionToFile, 70, 79, 122, 123,

127, 131, 132
writeWorksheet, 7, 8, 31, 68, 73, 77, 102,

105, 109, 111, 122, 126, 127,
130–132

writeWorksheet
(writeWorksheet-methods), 124

writeWorksheet,workbook,ANY,character-method
(writeWorksheet-methods), 124

writeWorksheet,workbook,ANY,numeric-method
(writeWorksheet-methods), 124

writeWorksheet-methods, 124
writeWorksheetToFile, 70, 79, 124, 125,

126, 131, 132

XLC, 39, 63, 66, 71, 74, 88, 93, 97–101, 103,
107, 127

xlcDump, 130, 131, 132, 134, 135
xlcEdit, 131, 131, 135
xlcFreeMemory, 132, 133
xlcMemoryReport, 133, 133
XLConnect (XLConnect-package), 4
XLConnect-deprecated, 134
XLConnect-package, 4
xlcRestore, 131, 132, 134


	XLConnect-package
	addImage-methods
	appendNamedRegion-methods
	appendWorksheet-methods
	aref
	aref2idx
	cellstyle-class
	clearNamedRegion-methods
	clearRange-methods
	clearRangeFromReference-methods
	clearSheet-methods
	cloneSheet-methods
	col2idx
	createCellStyle-methods
	createFreezePane-methods
	createName-methods
	createSheet-methods
	createSplitPane-methods
	cref2idx
	existsCellStyle-methods
	existsName-methods
	existsSheet-methods
	extraction-methods
	extractSheetName
	getActiveSheetIndex-methods
	getActiveSheetName-methods
	getBoundingBox-methods
	getCellFormula-methods
	getCellStyle-methods
	getCellStyleForType-methods
	getDefinedNames-methods
	getForceFormulaRecalculation-methods
	getLastColumn-methods
	getLastRow-methods
	getOrCreateCellStyle-methods
	getReferenceCoordinates-methods
	getReferenceCoordinatesForName-methods
	getReferenceCoordinatesForTable-methods
	getReferenceFormula-methods
	getSheetPos-methods
	getSheets-methods
	getTables-methods
	hideSheet-methods
	idx2aref
	idx2col
	idx2cref
	isSheetHidden-methods
	isSheetVeryHidden-methods
	isSheetVisible-methods
	loadWorkbook
	mergeCells-methods
	mirai
	onErrorCell-methods
	print-methods
	readNamedRegion
	readNamedRegionFromFile
	readTable
	readWorksheet-methods
	readWorksheetFromFile
	removeName-methods
	removePane-methods
	removeSheet-methods
	renameSheet-methods
	saveWorkbook-methods
	setActiveSheet-methods
	setAutoFilter-methods
	setBorder-methods
	setCellFormula-methods
	setCellStyle-methods
	setCellStyleForType-methods
	setColumnWidth-methods
	setDataFormat-methods
	setDataFormatForType-methods
	setFillBackgroundColor-methods
	setFillForegroundColor-methods
	setFillPattern-methods
	setForceFormulaRecalculation-methods
	setHyperlink-methods
	setMissingValue-methods
	setRowHeight-methods
	setSheetColor-methods
	setSheetPos-methods
	setStyleAction-methods
	setStyleNamePrefix-methods
	setWrapText-methods
	show-methods
	summary-methods
	swissfranc
	unhideSheet-methods
	unmergeCells-methods
	with.workbook
	workbook-class
	writeNamedRegion-methods
	writeNamedRegionToFile
	writeWorksheet-methods
	writeWorksheetToFile
	XLC
	xlcDump
	xlcEdit
	xlcFreeMemory
	xlcMemoryReport
	XLConnect-deprecated
	xlcRestore
	$-methods
	Index

